传统的跨语种交互翻译机器人语义纠错方法通常是单向的,效率较低,导致识别错误率较高。为此,文章提出基于语音信号的跨语种交互翻译机器人语义纠错方法。在基础语音识别的基础上,通过交互标定和特征提取来修正语义错误位置,并设计语音...传统的跨语种交互翻译机器人语义纠错方法通常是单向的,效率较低,导致识别错误率较高。为此,文章提出基于语音信号的跨语种交互翻译机器人语义纠错方法。在基础语音识别的基础上,通过交互标定和特征提取来修正语义错误位置,并设计语音信号翻译机器人的语义纠错模型,采用随时间反向传播(Backpropagation Through Time,BPTT)循环训练核验方式,以确保纠错的准确性。测试结果显示,经过3个阶段测试,选定的5段语音材料的纠错识别率成功控制在10%以下,表明基于语音信号的跨语种交互翻译机器人语义纠错方法高效,具有实际应用价值。展开更多
针对目前原始自适应蒙特卡洛定位(Adaptive Monte Carlo Localization,AMCL)在相似环境下绑架检测容易出错且重定位极易失败等问题,提出基于墙角族语义尺寸链的改进AMCL算法.融合机器人多传感器信息和Gmapping算法构建二维栅格地图,基于...针对目前原始自适应蒙特卡洛定位(Adaptive Monte Carlo Localization,AMCL)在相似环境下绑架检测容易出错且重定位极易失败等问题,提出基于墙角族语义尺寸链的改进AMCL算法.融合机器人多传感器信息和Gmapping算法构建二维栅格地图,基于Yolov5获取室内环境的目标检测框和类别信息,结合GrabCut算法和贝叶斯方法构建增量式语义映射地图;通过墙角的凸、凹和墙角相对于机器人的方位角对墙角进行分类,充分发掘语义映射地图中各墙角之间、墙角与室内物体之间的类别和位置关系,构建墙角族语义尺寸链和相应检索表;在定位过程中,基于墙角族语义尺寸链进行全局预定位,提出绑架检测机制进行绑架检测,在检测到绑架事件发生后,基于改进AMCL算法实现定位自恢复.最后,通过真实环境下的绑架实验验证了本文方法的有效性,实验表明,所提方法的全局定位准确率、全局定位速率、绑架检测准确率和绑架后定位准确率在相似环境下分别提升了42%、214%、88%和72%;在非相似环境下分别提升了44%、152%、12%和92%;在长走廊环境下分别提升了36%、426%、26%和68%.展开更多
文摘传统的跨语种交互翻译机器人语义纠错方法通常是单向的,效率较低,导致识别错误率较高。为此,文章提出基于语音信号的跨语种交互翻译机器人语义纠错方法。在基础语音识别的基础上,通过交互标定和特征提取来修正语义错误位置,并设计语音信号翻译机器人的语义纠错模型,采用随时间反向传播(Backpropagation Through Time,BPTT)循环训练核验方式,以确保纠错的准确性。测试结果显示,经过3个阶段测试,选定的5段语音材料的纠错识别率成功控制在10%以下,表明基于语音信号的跨语种交互翻译机器人语义纠错方法高效,具有实际应用价值。
文摘针对目前原始自适应蒙特卡洛定位(Adaptive Monte Carlo Localization,AMCL)在相似环境下绑架检测容易出错且重定位极易失败等问题,提出基于墙角族语义尺寸链的改进AMCL算法.融合机器人多传感器信息和Gmapping算法构建二维栅格地图,基于Yolov5获取室内环境的目标检测框和类别信息,结合GrabCut算法和贝叶斯方法构建增量式语义映射地图;通过墙角的凸、凹和墙角相对于机器人的方位角对墙角进行分类,充分发掘语义映射地图中各墙角之间、墙角与室内物体之间的类别和位置关系,构建墙角族语义尺寸链和相应检索表;在定位过程中,基于墙角族语义尺寸链进行全局预定位,提出绑架检测机制进行绑架检测,在检测到绑架事件发生后,基于改进AMCL算法实现定位自恢复.最后,通过真实环境下的绑架实验验证了本文方法的有效性,实验表明,所提方法的全局定位准确率、全局定位速率、绑架检测准确率和绑架后定位准确率在相似环境下分别提升了42%、214%、88%和72%;在非相似环境下分别提升了44%、152%、12%和92%;在长走廊环境下分别提升了36%、426%、26%和68%.