期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
汉译英教学中学生语言自然度提高浅析
1
作者 成星星 陈隽 《忻州师范学院学报》 2007年第6期104-106,共3页
汉译英教学中,学生语言自然度低下的问题普遍存在。如何提高学生的语言自然度是翻译教学中较为棘手的问题。文章将通过翻译实例从几个方面对这个问题进行初步探讨,并结合笔者的实际教学经验具体分析在翻译教学中如何有效地提高学生的译... 汉译英教学中,学生语言自然度低下的问题普遍存在。如何提高学生的语言自然度是翻译教学中较为棘手的问题。文章将通过翻译实例从几个方面对这个问题进行初步探讨,并结合笔者的实际教学经验具体分析在翻译教学中如何有效地提高学生的译文语言自然度。 展开更多
关键词 汉译英 大学英语教学 语言自然度
下载PDF
A survey of deep learning-based visual question answering 被引量:1
2
作者 HUANG Tong-yuan YANG Yu-ling YANG Xue-jiao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期728-746,共19页
With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significanc... With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significance and practical application value.Therefore,it is necessary to summarize the current research and provide some reference for researchers in this field.This article conducted a detailed and in-depth analysis and summarized of relevant research and typical methods of visual question answering field.First,relevant background knowledge about VQA(Visual Question Answering)was introduced.Secondly,the issues and challenges of visual question answering were discussed,and at the same time,some promising discussion on the particular methodologies was given.Thirdly,the key sub-problems affecting visual question answering were summarized and analyzed.Then,the current commonly used data sets and evaluation indicators were summarized.Next,in view of the popular algorithms and models in VQA research,comparison of the algorithms and models was summarized and listed.Finally,the future development trend and conclusion of visual question answering were prospected. 展开更多
关键词 computer vision natural language processing visual question answering deep learning attention mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部