A semantics-based model is proposed to enable weakened hedges, such as "more or less" and "roughly" in the context of linguistic multi-criteria decision making. First, the resemblance relations are defined based o...A semantics-based model is proposed to enable weakened hedges, such as "more or less" and "roughly" in the context of linguistic multi-criteria decision making. First, the resemblance relations are defined based on the semantics of terms on the domain. Then, the hedges can be represented after the upper and loose upper approximations of a linguistic term are derived. Accordingly, some compact formulae can be derived for the semantics of linguistic expressions with hedges. Parameters in these formulae are objectively determined according to the semantics of original terms. The proposed model presents a more natural way to express the decision information under uncertainties and its semantics is clear. The proposed model is clarified by solving the problem of evaluation and selection of sustainable innovative energy technologies. Computational results demonstrate that the model can deal with various uncertainties of the problem. Finally, the model is compared with existing techniques and extended to the case when the semantics of terms are represented by trapezoidal fuzzy numbers.展开更多
基金The National Natural Science Foundation of China(No.61273209)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1528)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX15-0191)
文摘A semantics-based model is proposed to enable weakened hedges, such as "more or less" and "roughly" in the context of linguistic multi-criteria decision making. First, the resemblance relations are defined based on the semantics of terms on the domain. Then, the hedges can be represented after the upper and loose upper approximations of a linguistic term are derived. Accordingly, some compact formulae can be derived for the semantics of linguistic expressions with hedges. Parameters in these formulae are objectively determined according to the semantics of original terms. The proposed model presents a more natural way to express the decision information under uncertainties and its semantics is clear. The proposed model is clarified by solving the problem of evaluation and selection of sustainable innovative energy technologies. Computational results demonstrate that the model can deal with various uncertainties of the problem. Finally, the model is compared with existing techniques and extended to the case when the semantics of terms are represented by trapezoidal fuzzy numbers.