期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于词语软匹配和修饰词权重差异化的术语相似度算法 被引量:2
1
作者 徐健 张智雄 《情报学报》 CSSCI 北大核心 2011年第11期1145-1151,共7页
针对现有基于语词的术语相似度典型算法存在的问题,提出了将WordNet和编辑距离计算应用于术语词语匹配过程,并根据术语修饰词的位置赋予特征权重的术语相似度改进算法。和已有算法相比,新的算法在三个方面有所改进。首先,在术语中... 针对现有基于语词的术语相似度典型算法存在的问题,提出了将WordNet和编辑距离计算应用于术语词语匹配过程,并根据术语修饰词的位置赋予特征权重的术语相似度改进算法。和已有算法相比,新的算法在三个方面有所改进。首先,在术语中心词匹配过程中引入WordNet的同义词、近义词检索功能,实现中心词之间的语义匹配;其次,将术语词语的直接匹配改进为基于编辑距离计算的模糊匹配;最后,在计算过程中充分考虑了术语修饰词与中心词之间的距离对修饰词权重分配的影响因素。针对新算法提出了具体的实现步骤,并选取基因工程领域实验数据对改进算法和现有典型算法进行对比评测。实验证明,每种改进方法在单独测试时效果优于或至少不低于Nenadic算法。基于三种改进方法的综合计算方法在计算效果方面具有明显提升。 展开更多
关键词 术语相似 语词相似度 相似计算
下载PDF
科技术语语义相似度计算方法研究综述 被引量:1
2
作者 徐健 张智雄 +1 位作者 肖卓 邓昭俊 《现代图书情报技术》 CSSCI 北大核心 2010年第7期51-57,共7页
在对当前术语语义相似度计算进行分析研究的基础上,将科技术语相似度计算归纳为基于语料文集的相似度计算和基于开放知识资源的相似度计算,对相似度指标的集成算法进行综述。并对科技术语语义相似度计算在自然语言处理和知识挖掘方面的... 在对当前术语语义相似度计算进行分析研究的基础上,将科技术语相似度计算归纳为基于语料文集的相似度计算和基于开放知识资源的相似度计算,对相似度指标的集成算法进行综述。并对科技术语语义相似度计算在自然语言处理和知识挖掘方面的应用进行总结,对其未来研究发展进行展望,为进一步构建高效的术语相似度计算系统提供良好借鉴。 展开更多
关键词 术语语义相似 相似计算 语词相似度
原文传递
Enabling weakened hedges in linguistic multi-criteria decision making
3
作者 王海 徐泽水 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期125-131,共7页
A semantics-based model is proposed to enable weakened hedges, such as "more or less" and "roughly" in the context of linguistic multi-criteria decision making. First, the resemblance relations are defined based o... A semantics-based model is proposed to enable weakened hedges, such as "more or less" and "roughly" in the context of linguistic multi-criteria decision making. First, the resemblance relations are defined based on the semantics of terms on the domain. Then, the hedges can be represented after the upper and loose upper approximations of a linguistic term are derived. Accordingly, some compact formulae can be derived for the semantics of linguistic expressions with hedges. Parameters in these formulae are objectively determined according to the semantics of original terms. The proposed model presents a more natural way to express the decision information under uncertainties and its semantics is clear. The proposed model is clarified by solving the problem of evaluation and selection of sustainable innovative energy technologies. Computational results demonstrate that the model can deal with various uncertainties of the problem. Finally, the model is compared with existing techniques and extended to the case when the semantics of terms are represented by trapezoidal fuzzy numbers. 展开更多
关键词 decision making multi-criteria decision making linguistic term sets linguistic hedges similarity relation
下载PDF
Vari-gram language model based on word clustering
4
作者 袁里驰 《Journal of Central South University》 SCIE EI CAS 2012年第4期1057-1062,共6页
Category-based statistic language model is an important method to solve the problem of sparse data.But there are two bottlenecks:1) The problem of word clustering.It is hard to find a suitable clustering method with g... Category-based statistic language model is an important method to solve the problem of sparse data.But there are two bottlenecks:1) The problem of word clustering.It is hard to find a suitable clustering method with good performance and less computation.2) Class-based method always loses the prediction ability to adapt the text in different domains.In order to solve above problems,a definition of word similarity by utilizing mutual information was presented.Based on word similarity,the definition of word set similarity was given.Experiments show that word clustering algorithm based on similarity is better than conventional greedy clustering method in speed and performance,and the perplexity is reduced from 283 to 218.At the same time,an absolute weighted difference method was presented and was used to construct vari-gram language model which has good prediction ability.The perplexity of vari-gram model is reduced from 234.65 to 219.14 on Chinese corpora,and is reduced from 195.56 to 184.25 on English corpora compared with category-based model. 展开更多
关键词 word similarity word clustering statistical language model vari-gram language model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部