期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多域融合及神经架构搜索的语音增强方法 被引量:1
1
作者 张睿 张鹏云 孙超利 《通信学报》 EI CSCD 北大核心 2024年第2期225-239,共15页
为进一步提高语音增强模型的自学习及降噪能力,提出基于多域融合及神经架构搜索的语音增强方法。该方法设计了语音信号多空间域映射及融合机制,实现信号实复数关联关系的挖掘;围绕模型卷积池化运算特点,提出了复数神经架构搜索机制,通... 为进一步提高语音增强模型的自学习及降噪能力,提出基于多域融合及神经架构搜索的语音增强方法。该方法设计了语音信号多空间域映射及融合机制,实现信号实复数关联关系的挖掘;围绕模型卷积池化运算特点,提出了复数神经架构搜索机制,通过设计的搜索空间、搜索策略及评估策略,高效自动地构建出语音增强模型。实验搜索到的最优语音增强模型与基线模型的对比泛化实验中,语音质量客观评价(PESQ)、短时客观可懂度(STOI)两大指标较最优基线模型均最大提升5.6%,且模型参数量最低。 展开更多
关键词 语音增强模型 复数空间域映射 多域融合 复数神经架构搜索 低成本评估
下载PDF
SPEECH ENHANCEMENT USING AN MMSE SHORT TIME DCT COEFFICIENTS ESTIMATOR WITH SUPERGAUSSIAN SPEECH MODELING 被引量:4
2
作者 Zou Xia Zhang Xiongwei 《Journal of Electronics(China)》 2007年第3期332-337,共6页
In this paper,two speech enhancement systems with supergaussian speech modeling are presented. The clean speech components are estimated by Minimum-Mean-Square-Error (MMSE) es-timator under the assumption that the DCT... In this paper,two speech enhancement systems with supergaussian speech modeling are presented. The clean speech components are estimated by Minimum-Mean-Square-Error (MMSE) es-timator under the assumption that the DCT coefficients of clean speech are modeled by a Laplacian or a Gamma distribution and the DCT coefficients of the noise are Gaussian distributed. Then,MMSE estimators under speech presence uncertainty are derived. Furthermore,the proper estimators of the speech statistical parameters are proposed. The speech Laplacian factor is estimated by a new deci-sion-directed method. The simulation results show that the proposed algorithm yields less residual noise and better speech quality than the Gaussian based speech enhancement algorithms proposed in recent years. 展开更多
关键词 Speech enhancement Speech model Minimum-Mean-Square-Error (MMSE) Super Ganssian
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部