轨迹数据驱动的行人行为分析建模在公共场合异常事件监测、人车冲突风险评估等方面具有重要意义,广布的交通视频监控是行人群轨迹数据的重要来源。行人轨迹具有趋势性和规律性,提取的原始轨迹信息冗余较大,且密集行人群频繁遮挡,不同行...轨迹数据驱动的行人行为分析建模在公共场合异常事件监测、人车冲突风险评估等方面具有重要意义,广布的交通视频监控是行人群轨迹数据的重要来源。行人轨迹具有趋势性和规律性,提取的原始轨迹信息冗余较大,且密集行人群频繁遮挡,不同行人轨迹易发生误匹配,导致数据失真。针对以上问题,根据行人轨迹的局部结构特征和数值特性,设计一种改进的两阶段自适应滑窗轨迹压缩算法ATSSW(Adaptive Two Stage Sliding Window)和基于轨迹局部转向角的误匹配识别和分割方法ABTDS(Angle-based Trajectory Detection and Segmentation),清洗和压缩行人轨迹数据。首先,ATSSW算法考虑轨迹各坐标分量的数值分布特征,将提取到的所有原始轨迹分为漂移和非漂移2类,采取不同的策略分别压缩2类轨迹;然后,ABTDS算法分析压缩后的轨迹局部转角特征,辨识误匹配轨迹样本;最后,ABTDS算法分割误匹配样本,并用分割后的轨迹更新原始轨迹数据集。研究结果表明:ATSSW算法压缩了653条原始行人轨迹,总压缩信息损失1 002.04,总平均轨迹压缩率为6.07%,总平均轨迹压缩保留率为95.35%;原始轨迹集中存在126条误匹配轨迹,ABTDS算法辨识并成功分割了其中的107条,检出率为84.92%;所提算法抑制了原始行人轨迹中漂移点和误匹配现象所致的干扰,减少了原始轨迹数据噪声,可提高轨迹数据驱动的行人行为建模精确度;适当压缩原始轨迹,可减轻轨迹数据存储处理的负担。展开更多
文摘轨迹数据驱动的行人行为分析建模在公共场合异常事件监测、人车冲突风险评估等方面具有重要意义,广布的交通视频监控是行人群轨迹数据的重要来源。行人轨迹具有趋势性和规律性,提取的原始轨迹信息冗余较大,且密集行人群频繁遮挡,不同行人轨迹易发生误匹配,导致数据失真。针对以上问题,根据行人轨迹的局部结构特征和数值特性,设计一种改进的两阶段自适应滑窗轨迹压缩算法ATSSW(Adaptive Two Stage Sliding Window)和基于轨迹局部转向角的误匹配识别和分割方法ABTDS(Angle-based Trajectory Detection and Segmentation),清洗和压缩行人轨迹数据。首先,ATSSW算法考虑轨迹各坐标分量的数值分布特征,将提取到的所有原始轨迹分为漂移和非漂移2类,采取不同的策略分别压缩2类轨迹;然后,ABTDS算法分析压缩后的轨迹局部转角特征,辨识误匹配轨迹样本;最后,ABTDS算法分割误匹配样本,并用分割后的轨迹更新原始轨迹数据集。研究结果表明:ATSSW算法压缩了653条原始行人轨迹,总压缩信息损失1 002.04,总平均轨迹压缩率为6.07%,总平均轨迹压缩保留率为95.35%;原始轨迹集中存在126条误匹配轨迹,ABTDS算法辨识并成功分割了其中的107条,检出率为84.92%;所提算法抑制了原始行人轨迹中漂移点和误匹配现象所致的干扰,减少了原始轨迹数据噪声,可提高轨迹数据驱动的行人行为建模精确度;适当压缩原始轨迹,可减轻轨迹数据存储处理的负担。