The temperature characteristics of a silicon microgyroscope are studied, and the temperature compensation method of the silicon microgyroscope is proposed. First, an open-loop circuit is adopted to test the entire mic...The temperature characteristics of a silicon microgyroscope are studied, and the temperature compensation method of the silicon microgyroscope is proposed. First, an open-loop circuit is adopted to test the entire microgyroscope's resonant frequency and quality factor variations over temperature, and the zero bias changing trend over temperature is measured via a closed-loop circuit. Then, in order to alleviate the temperature effects on the performance of the microgyroscope, a kind of temperature compensated method based on the error back propagation(BP)neural network is proposed. By the Matlab simulation, the optimal temperature compensation model based on the BP neural network is well trained after four steps, and the objective error of the microgyroscope's zero bias can achieve 0.001 in full temperature range. By the experiment, the real time operation results of the compensation method demonstrate that the maximum zero bias of the microgyroscope can be decreased from 12.43 to 0.75(°)/s after compensation when the ambient temperature varies from -40 to 80℃, which greatly improves the zero bias stability performance of the microgyroscope.展开更多
A new method was proposed, in which a high-power CO2 laser modulated by high frequency was used as the driv- ing source to heat up a surface-temperature sensor. The continual beam and the pulsed beam sent out by the s...A new method was proposed, in which a high-power CO2 laser modulated by high frequency was used as the driv- ing source to heat up a surface-temperature sensor. The continual beam and the pulsed beam sent out by the same laser could be used in the same system to carry on the static calibration of the radiation thermometer and the dynamic calibration of the temperature sensor to be checked. The frequency-response characteristics of high-speed radiation thermometer surpassed that of the temperature sensor, therefore it could be used as the reference value to calibrate the latter and let system error be cor- rected. Differences in the environment of the sensor installing and the error caused by the change of thermo-physical proper- ty could be avoided. Thus, the difficult problem of traceable dynamic calibration of temperature was solved. In experiment, to obtain the frequency characteristics of the thermocouple and the dynamic performance of the K type thermocouple, which could compensate the dynamic characteristics of the sensor, the sensor was dynamically corrected by using the method, and then the mathematical model was established.展开更多
To study the influence of the Soret and Dufour effects on the reactive characteristics of a porous packed bed with endothermic reactions and forced convection, a two-dimensional mathematical model considering the cros...To study the influence of the Soret and Dufour effects on the reactive characteristics of a porous packed bed with endothermic reactions and forced convection, a two-dimensional mathematical model considering the cross-diffusion effects was developed in accordance with the thermodynamics of irreversible processes and the local thermal non-equilibrium model. The simulation results were validated by comparing with experimental data. The influence of the Soret and Dufour effects on the heat transfer, mass transfer and endothermic chemical reaction in the non-thermal equilibrium packed bed is discussed. It was found that when the Peclet number reaches 1865, the maximum relative error of the concentration of gas product induced by the Soret effect is 34.7% and that of the solid fractional conversion caused by the Dufour effect is 10.8% at reaction time 160 s and initial temperature 1473 K. The differences induced by the Soret and Dufour effects are demonstrated numerically to increase gradually with the initial temperature of feeding gas and the Peclet number.展开更多
Micro prism film used in LCD industry can be manufactured by roll to roll method with copper-plated roll mold. As copper-plated roll mold is getting larger, pitch error is getting severer. The pitch error drops the qu...Micro prism film used in LCD industry can be manufactured by roll to roll method with copper-plated roll mold. As copper-plated roll mold is getting larger, pitch error is getting severer. The pitch error drops the quality of micro prism film. The main cause of the pitch error was investigated during machining large roll mold whose machined length was 1 200 mm. The temperature of machining system was elevated during machining roll mold, and this elevation induced thermal expansion of the system. The temperature variation around the roll mold also made thermal expansion of the roll mold. The amount of thermal expansion had strong relationship to the amount of pitch error. Therefore, the roll mold was machined after warming-up of machining system and precise temperature controller around copper-plated roll mold was installed, which minimized the temperature variation. Finally, precise micro prism patterns without pitch error were machined on the large roll mold.展开更多
Validated satellite-derived sea surface temperatures (SSTs) are widely used for climate monitoring and ocean data assimilation systems. In this study, the Fengyun-3A (FY-3A) SST experimental product is evaluated using...Validated satellite-derived sea surface temperatures (SSTs) are widely used for climate monitoring and ocean data assimilation systems. In this study, the Fengyun-3A (FY-3A) SST experimental product is evaluated using Advanced Very High Resolution Radiometer (AVHRR)-merged and in situ SSTs. A comparison of AVHRR-merged SSTs reveals a negative bias of more than 2K in FY-3A SSTs in most of the tropical Pacific and low-latitude Indian and Atlantic Oceans. The error variance of FY-3A SSTs is estimated using three-way error analysis. FY-3A SSTs show regional error variance in global oceans with a maximum error variance of 2.2 K in the Pacific Ocean. In addition, a significant seasonal variation of error variance is present in FY-3A SSTs, which indicates that the quality of FY-3A SST could be improved by adjusting the parameters in the SST retrieval algorithm and by applying regional and seasonal algorithms, particularly in key areas such as the tropical Pacific Ocean. An objective analysis method is used to merge FY-3A SSTs with the drifter buoy data. The errors of FY-3A SSTs are decreased to-0.45K comparing with SST observations from GTSPP.展开更多
The paper design intelligent monitoring system of aquaculture based on CC2530 wireless sensor networks, combined with the actual situation, takes the tilapia as an example to analyze detailed of the process in intelli...The paper design intelligent monitoring system of aquaculture based on CC2530 wireless sensor networks, combined with the actual situation, takes the tilapia as an example to analyze detailed of the process in intelligent high density culture. At the same time, the paper introduced each function module of aquaculture for the intelligent monitoring system and formulate control standard according to the aquatic products in different growth stages of demand, through the real-time monitoring of aquaculture environment, measured the standard parameter setting of parameters and the system automatically adjusts the aquaculture environment comparison. The test results show that the temperature error is in the range of 0.5 ℃, dissolved oxygen amount of error is in the range of 0.3mg/L, the error of pH value is within 0.3, system data transmission correct rate is more than 98%.展开更多
Temperature sensitivity of waxy crude oils makes it difficult to study their flow behaviour in the presence of water especially near their wax appearance temperature (WAT). In this study a method was proposed and im...Temperature sensitivity of waxy crude oils makes it difficult to study their flow behaviour in the presence of water especially near their wax appearance temperature (WAT). In this study a method was proposed and implemented to mitigate such difficulties which was applied in predicting mixture temperatures (Tin) of a typical Malaysian waxy crude oil and water flow in a horizontal pipe. To this end, two analytical models were derived firstly from calorimetry equation which based on developed two correlations for defining crude oil heat capacity actualized from the existed specific heat capacities of crude oils. The models were then applied for a set of experiments to reach the defined three predetermined Tm (26 ℃, 28 ℃ and 30 ℃). The comparison between the predicted mixture temperatures (Tin,1 and Tin,2) from the two models and the experimental results displayed acceptable absolute average errors (0.80% 0.62%, 0.53% for model 1; 0,74%, 0.54%, 0.52% for model 2). Moreover, the average errors for both models are in the range of standard error limits (4-0,75Z) according to ASTM E230. Conclusively, the proposed model showed the ease of obtaining mixture temperatures close to WAT as predetermined with accuracy of ± 0.5 ℃approximately for over 84% of the examined cases. The method is seen as a practical reference point to further study the flow behaviour of waxy crudes in oil-water two-phase flow system near sensitive temperatures.展开更多
The soft X-ray spectroscopy, laser Thomson scattering and electron cyclotron emission ( ECE ) are usually adopted for electron temperature measurement in fusion research of magnetic confinement. The particular soft ...The soft X-ray spectroscopy, laser Thomson scattering and electron cyclotron emission ( ECE ) are usually adopted for electron temperature measurement in fusion research of magnetic confinement. The particular soft X-ray spectroscopy has the very good spatial-temporal resolution and smaller measuring error than laser Thomson scattering, a close spatial-temporal resolution to ECE, absolute measurement ability, and smaller influence by suprathermal and runaway electrons than ECE.展开更多
Using predictions for the sea surface temperature anomaly(SSTA) generated by an intermediate coupled model(ICM)ensemble prediction system(EPS), we first explore the "spring predictability barrier"(SPB) probl...Using predictions for the sea surface temperature anomaly(SSTA) generated by an intermediate coupled model(ICM)ensemble prediction system(EPS), we first explore the "spring predictability barrier"(SPB) problem for the 2015/16 strong El Nio event from the perspective of error growth. By analyzing the growth tendency of the prediction errors for ensemble forecast members, we conclude that the prediction errors for the 2015/16 El Nio event tended to show a distinct season-dependent evolution, with prominent growth in spring and/or the beginning of the summer. This finding indicates that the predictions for the 2015/16 El Nio occurred a significant SPB phenomenon. We show that the SPB occurred in the 2015/16 El Nio predictions did not arise because of the uncertainties in the initial conditions but because of model errors. As such, the mean of ensemble forecast members filtered the effect of model errors and weakened the effect of the SPB, ultimately reducing the prediction errors for the 2015/16 El Nio event. By investigating the model errors represented by the tendency errors for the SSTA component,we demonstrate the prominent features of the tendency errors that often cause an SPB for the 2015/16 El Nio event and explain why the 2015/16 El Nio was under-predicted by the ICM EPS. Moreover, we reveal the typical feature of the tendency errors that cause not only a significant SPB but also an aggressively large prediction error. The feature is that the tendency errors present a zonal dipolar pattern with the west poles of positive anomalies in the equatorial western Pacific and the east poles of negative anomalies in the equatorial eastern Pacific. This tendency error bears great similarities with that of the most sensitive nonlinear forcing singular vector(NFSV)-tendency errors reported by Duan et al. and demonstrates the existence of an NFSV tendency error in realistic predictions. For other strong El Nio events, such as those that occurred in 1982/83 and 1997/98, we obtain the tendency errors of the NFSV structure, which cause a significant SPB and yield a much larger prediction error. These results suggest that the forecast skill of the ICM EPS for strong El Nio events could be greatly enhanced by using the NFSV-like tendency error to correct the model.展开更多
基金The National High Technology Research and Development Program of China (863 Program)(No.2002AA812038)the NationalNatural Science Foundation of China (No.60974116)
文摘The temperature characteristics of a silicon microgyroscope are studied, and the temperature compensation method of the silicon microgyroscope is proposed. First, an open-loop circuit is adopted to test the entire microgyroscope's resonant frequency and quality factor variations over temperature, and the zero bias changing trend over temperature is measured via a closed-loop circuit. Then, in order to alleviate the temperature effects on the performance of the microgyroscope, a kind of temperature compensated method based on the error back propagation(BP)neural network is proposed. By the Matlab simulation, the optimal temperature compensation model based on the BP neural network is well trained after four steps, and the objective error of the microgyroscope's zero bias can achieve 0.001 in full temperature range. By the experiment, the real time operation results of the compensation method demonstrate that the maximum zero bias of the microgyroscope can be decreased from 12.43 to 0.75(°)/s after compensation when the ambient temperature varies from -40 to 80℃, which greatly improves the zero bias stability performance of the microgyroscope.
基金Research Project Supported by Shanxi Scholarship Council of China(No.2012-068)Taiyuan Science and Technology Agency(No.120247-20)Surface-temperature Sensor Dynamic Measurement and Calibration Technology Research of National Defense Fundamental Scientific Research
文摘A new method was proposed, in which a high-power CO2 laser modulated by high frequency was used as the driv- ing source to heat up a surface-temperature sensor. The continual beam and the pulsed beam sent out by the same laser could be used in the same system to carry on the static calibration of the radiation thermometer and the dynamic calibration of the temperature sensor to be checked. The frequency-response characteristics of high-speed radiation thermometer surpassed that of the temperature sensor, therefore it could be used as the reference value to calibrate the latter and let system error be cor- rected. Differences in the environment of the sensor installing and the error caused by the change of thermo-physical proper- ty could be avoided. Thus, the difficult problem of traceable dynamic calibration of temperature was solved. In experiment, to obtain the frequency characteristics of the thermocouple and the dynamic performance of the K type thermocouple, which could compensate the dynamic characteristics of the sensor, the sensor was dynamically corrected by using the method, and then the mathematical model was established.
基金Supported by the National Natural Science Foundation of China (51004071, 51164015) Special Project for High-end CNC Machine Tools and Basic Manufacturing Equipment of China (2012ZX04007-021) Liaoning Province College Excellent Talents Fund Project (LJQ2013012)
文摘To study the influence of the Soret and Dufour effects on the reactive characteristics of a porous packed bed with endothermic reactions and forced convection, a two-dimensional mathematical model considering the cross-diffusion effects was developed in accordance with the thermodynamics of irreversible processes and the local thermal non-equilibrium model. The simulation results were validated by comparing with experimental data. The influence of the Soret and Dufour effects on the heat transfer, mass transfer and endothermic chemical reaction in the non-thermal equilibrium packed bed is discussed. It was found that when the Peclet number reaches 1865, the maximum relative error of the concentration of gas product induced by the Soret effect is 34.7% and that of the solid fractional conversion caused by the Dufour effect is 10.8% at reaction time 160 s and initial temperature 1473 K. The differences induced by the Soret and Dufour effects are demonstrated numerically to increase gradually with the initial temperature of feeding gas and the Peclet number.
基金Project (2010-0008-277) supported by NCRC (National Core Research Center) Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology, Korea
文摘Micro prism film used in LCD industry can be manufactured by roll to roll method with copper-plated roll mold. As copper-plated roll mold is getting larger, pitch error is getting severer. The pitch error drops the quality of micro prism film. The main cause of the pitch error was investigated during machining large roll mold whose machined length was 1 200 mm. The temperature of machining system was elevated during machining roll mold, and this elevation induced thermal expansion of the system. The temperature variation around the roll mold also made thermal expansion of the roll mold. The amount of thermal expansion had strong relationship to the amount of pitch error. Therefore, the roll mold was machined after warming-up of machining system and precise temperature controller around copper-plated roll mold was installed, which minimized the temperature variation. Finally, precise micro prism patterns without pitch error were machined on the large roll mold.
基金supported by the National Basic Research Program of China(973 Program,Grant Nos.2010CB951902 and 2011CB403505)the National Key Technologies R&D Program of China(Grant No.2009BAC51B03)the National Natural Science Foundation of China(Grant No.41106003)
文摘Validated satellite-derived sea surface temperatures (SSTs) are widely used for climate monitoring and ocean data assimilation systems. In this study, the Fengyun-3A (FY-3A) SST experimental product is evaluated using Advanced Very High Resolution Radiometer (AVHRR)-merged and in situ SSTs. A comparison of AVHRR-merged SSTs reveals a negative bias of more than 2K in FY-3A SSTs in most of the tropical Pacific and low-latitude Indian and Atlantic Oceans. The error variance of FY-3A SSTs is estimated using three-way error analysis. FY-3A SSTs show regional error variance in global oceans with a maximum error variance of 2.2 K in the Pacific Ocean. In addition, a significant seasonal variation of error variance is present in FY-3A SSTs, which indicates that the quality of FY-3A SST could be improved by adjusting the parameters in the SST retrieval algorithm and by applying regional and seasonal algorithms, particularly in key areas such as the tropical Pacific Ocean. An objective analysis method is used to merge FY-3A SSTs with the drifter buoy data. The errors of FY-3A SSTs are decreased to-0.45K comparing with SST observations from GTSPP.
文摘The paper design intelligent monitoring system of aquaculture based on CC2530 wireless sensor networks, combined with the actual situation, takes the tilapia as an example to analyze detailed of the process in intelligent high density culture. At the same time, the paper introduced each function module of aquaculture for the intelligent monitoring system and formulate control standard according to the aquatic products in different growth stages of demand, through the real-time monitoring of aquaculture environment, measured the standard parameter setting of parameters and the system automatically adjusts the aquaculture environment comparison. The test results show that the temperature error is in the range of 0.5 ℃, dissolved oxygen amount of error is in the range of 0.3mg/L, the error of pH value is within 0.3, system data transmission correct rate is more than 98%.
基金Supported by the Malaysia's Ministry of Higher Education(FRGS/4F136)the University Teknologi Malaysia(RUG/01H68)
文摘Temperature sensitivity of waxy crude oils makes it difficult to study their flow behaviour in the presence of water especially near their wax appearance temperature (WAT). In this study a method was proposed and implemented to mitigate such difficulties which was applied in predicting mixture temperatures (Tin) of a typical Malaysian waxy crude oil and water flow in a horizontal pipe. To this end, two analytical models were derived firstly from calorimetry equation which based on developed two correlations for defining crude oil heat capacity actualized from the existed specific heat capacities of crude oils. The models were then applied for a set of experiments to reach the defined three predetermined Tm (26 ℃, 28 ℃ and 30 ℃). The comparison between the predicted mixture temperatures (Tin,1 and Tin,2) from the two models and the experimental results displayed acceptable absolute average errors (0.80% 0.62%, 0.53% for model 1; 0,74%, 0.54%, 0.52% for model 2). Moreover, the average errors for both models are in the range of standard error limits (4-0,75Z) according to ASTM E230. Conclusively, the proposed model showed the ease of obtaining mixture temperatures close to WAT as predetermined with accuracy of ± 0.5 ℃approximately for over 84% of the examined cases. The method is seen as a practical reference point to further study the flow behaviour of waxy crudes in oil-water two-phase flow system near sensitive temperatures.
文摘The soft X-ray spectroscopy, laser Thomson scattering and electron cyclotron emission ( ECE ) are usually adopted for electron temperature measurement in fusion research of magnetic confinement. The particular soft X-ray spectroscopy has the very good spatial-temporal resolution and smaller measuring error than laser Thomson scattering, a close spatial-temporal resolution to ECE, absolute measurement ability, and smaller influence by suprathermal and runaway electrons than ECE.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41230420 & 41525017)the National Public Benefit (Meteorology) Research Foundation of China (Grant No. GYHY201306018)
文摘Using predictions for the sea surface temperature anomaly(SSTA) generated by an intermediate coupled model(ICM)ensemble prediction system(EPS), we first explore the "spring predictability barrier"(SPB) problem for the 2015/16 strong El Nio event from the perspective of error growth. By analyzing the growth tendency of the prediction errors for ensemble forecast members, we conclude that the prediction errors for the 2015/16 El Nio event tended to show a distinct season-dependent evolution, with prominent growth in spring and/or the beginning of the summer. This finding indicates that the predictions for the 2015/16 El Nio occurred a significant SPB phenomenon. We show that the SPB occurred in the 2015/16 El Nio predictions did not arise because of the uncertainties in the initial conditions but because of model errors. As such, the mean of ensemble forecast members filtered the effect of model errors and weakened the effect of the SPB, ultimately reducing the prediction errors for the 2015/16 El Nio event. By investigating the model errors represented by the tendency errors for the SSTA component,we demonstrate the prominent features of the tendency errors that often cause an SPB for the 2015/16 El Nio event and explain why the 2015/16 El Nio was under-predicted by the ICM EPS. Moreover, we reveal the typical feature of the tendency errors that cause not only a significant SPB but also an aggressively large prediction error. The feature is that the tendency errors present a zonal dipolar pattern with the west poles of positive anomalies in the equatorial western Pacific and the east poles of negative anomalies in the equatorial eastern Pacific. This tendency error bears great similarities with that of the most sensitive nonlinear forcing singular vector(NFSV)-tendency errors reported by Duan et al. and demonstrates the existence of an NFSV tendency error in realistic predictions. For other strong El Nio events, such as those that occurred in 1982/83 and 1997/98, we obtain the tendency errors of the NFSV structure, which cause a significant SPB and yield a much larger prediction error. These results suggest that the forecast skill of the ICM EPS for strong El Nio events could be greatly enhanced by using the NFSV-like tendency error to correct the model.