The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth ord...The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth order problems.展开更多
In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis sh...In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.展开更多
We present several numerical methods and establish their error estimates for the discretization of the nonlinear Dirac equation (NLDE) in the nonrelativistic limit regime, involving a small dimensionless parameter 0...We present several numerical methods and establish their error estimates for the discretization of the nonlinear Dirac equation (NLDE) in the nonrelativistic limit regime, involving a small dimensionless parameter 0 〈 ε〈〈1 which is inversely proportional to the speed of light. In this limit regime, the solution is highly oscillatory in time, i.e., there are propagating waves with wavelength O( ε^2) and O(1) in time and space, respectively. We begin with the conservative Crank-Nicolson finite difference (CNFD) method and establish rigorously its error estimate which depends explicitly on the mesh size h and time step τ- as well as the small parameter 0 〈 ε≤1 Based on the error bound, in order to obtain 'correct' numerical solutions in the nonrelativistic limit regime, i.e., 0 〈 ε≤1 , the CNFD method requests the ε-scalability: τ- = O(ε3) and h = O(√ε). Then we propose and analyze two numerical methods for the discretization of NLDE by using the Fourier spectral discretization for spatial derivatives combined with the exponential wave integrator and time- splitting technique for temporal derivatives, respectively. Rigorous error bounds for the two numerical methods show that their ε-scalability is improved to τ = O(ε2) and h = O(1) when 0 〈 ε 〈〈 1. Extensive numerical results are reported to confirm our error estimates.展开更多
Based on the work of Xu and Zhou(2000),this paper makes a further discussion on conforming finite elements approximation for Steklov eigenvalue problems,and proves a local a priori error estimate and a new local a pos...Based on the work of Xu and Zhou(2000),this paper makes a further discussion on conforming finite elements approximation for Steklov eigenvalue problems,and proves a local a priori error estimate and a new local a posteriori error estimate in ||·||1,Ω0 norm for conforming elements eigenfunction,which has not been studied in existing literatures.展开更多
In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergenc...In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergence result of the eigenfunction approximation.Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.展开更多
Consider a semiparametric regression model with linear time series errors Y_k= x′ _kβ + g(t_k) + ε_k, 1 ≤ k ≤ n, where Y_k's are responses, x_k =(x_(k1),x_(k2),···,x_(kp))′ and t_k ∈ T is con...Consider a semiparametric regression model with linear time series errors Y_k= x′ _kβ + g(t_k) + ε_k, 1 ≤ k ≤ n, where Y_k's are responses, x_k =(x_(k1),x_(k2),···,x_(kp))′ and t_k ∈ T is contained in R are fixed design points, β =(β_1,β_2,···,β_p)′ is an unknown parameter vector, g(·) is an unknown bounded real-valuedfunction defined on a compact subset T of the real line R, and ε_k is a linear process given byε_k = ∑ from j=0 to ∞ of ψ_je_(k-j), ψ_0=1, where ∑ from j=0 to ∞ of |ψ_j| < ∞, and e_j,j=0, +-1, +-2,···, ard i.i.d. random variables. In this paper we establish the asymptoticnormality of the least squares estimator of β, a smooth estimator of g(·), and estimators of theautocovariance and autocorrelation functions of the linear process ε_k.展开更多
The artificial boundary method is one of the most popular and effective numerical methods tor solving partial differential equations on unbounded domains, with more than thirty years development. The artificiM boundar...The artificial boundary method is one of the most popular and effective numerical methods tor solving partial differential equations on unbounded domains, with more than thirty years development. The artificiM boundary method has reached maturity in recent years. It has been applied to various problems in scientific and engineering computations, and the theoretical issues such as the convergence and error estimates of the artificial boundary method have been solved gradually. This paper reviews the development and discusses different forms of the artificial boundary method.展开更多
文摘The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth order problems.
基金supported partially by the innovation fund of Shanghai Normal Universitysupported partially by NSERC of Canada under Grant OGP0046726.
文摘In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.
基金supported by the Ministry of Education of Singapore(Grant No.R146-000-196-112)National Natural Science Foundation of China(Grant No.91430103)
文摘We present several numerical methods and establish their error estimates for the discretization of the nonlinear Dirac equation (NLDE) in the nonrelativistic limit regime, involving a small dimensionless parameter 0 〈 ε〈〈1 which is inversely proportional to the speed of light. In this limit regime, the solution is highly oscillatory in time, i.e., there are propagating waves with wavelength O( ε^2) and O(1) in time and space, respectively. We begin with the conservative Crank-Nicolson finite difference (CNFD) method and establish rigorously its error estimate which depends explicitly on the mesh size h and time step τ- as well as the small parameter 0 〈 ε≤1 Based on the error bound, in order to obtain 'correct' numerical solutions in the nonrelativistic limit regime, i.e., 0 〈 ε≤1 , the CNFD method requests the ε-scalability: τ- = O(ε3) and h = O(√ε). Then we propose and analyze two numerical methods for the discretization of NLDE by using the Fourier spectral discretization for spatial derivatives combined with the exponential wave integrator and time- splitting technique for temporal derivatives, respectively. Rigorous error bounds for the two numerical methods show that their ε-scalability is improved to τ = O(ε2) and h = O(1) when 0 〈 ε 〈〈 1. Extensive numerical results are reported to confirm our error estimates.
基金supported by National Natural Science Foundation of China(Grant Nos.11201093 and 11161012)
文摘Based on the work of Xu and Zhou(2000),this paper makes a further discussion on conforming finite elements approximation for Steklov eigenvalue problems,and proves a local a priori error estimate and a new local a posteriori error estimate in ||·||1,Ω0 norm for conforming elements eigenfunction,which has not been studied in existing literatures.
基金supported by National Natural Science Foundation of China(Grant Nos.11001259,11031006,11071265,11201501 and 91230110)National Basic Research Program of China(973 Project)(Grant No. 2011CB309703)+3 种基金International S&T Cooperation Program of China(Grant No. 2010DFR00700)Croucher Foundation of Hong Kong Baptist Universitythe National Center for Mathematics and Interdisciplinary Science,CAS,the President Foundation of AMSS-CASthe Fundamental Research Funds for the CentralUniversities(Grant No. 2012121003)
文摘In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergence result of the eigenfunction approximation.Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.
基金CHEN Min's work is supported by Grant No. 70221001 and No. 70331001 from NNSFC and Grant No. KZCX2-SW-118 from CAS.
文摘Consider a semiparametric regression model with linear time series errors Y_k= x′ _kβ + g(t_k) + ε_k, 1 ≤ k ≤ n, where Y_k's are responses, x_k =(x_(k1),x_(k2),···,x_(kp))′ and t_k ∈ T is contained in R are fixed design points, β =(β_1,β_2,···,β_p)′ is an unknown parameter vector, g(·) is an unknown bounded real-valuedfunction defined on a compact subset T of the real line R, and ε_k is a linear process given byε_k = ∑ from j=0 to ∞ of ψ_je_(k-j), ψ_0=1, where ∑ from j=0 to ∞ of |ψ_j| < ∞, and e_j,j=0, +-1, +-2,···, ard i.i.d. random variables. In this paper we establish the asymptoticnormality of the least squares estimator of β, a smooth estimator of g(·), and estimators of theautocovariance and autocorrelation functions of the linear process ε_k.
基金supported by National National Science Foundation of China(Grant No.10971116)FRG of Hong Kong Baptist University(Grant No.FRG1/11-12/051)
文摘The artificial boundary method is one of the most popular and effective numerical methods tor solving partial differential equations on unbounded domains, with more than thirty years development. The artificiM boundary method has reached maturity in recent years. It has been applied to various problems in scientific and engineering computations, and the theoretical issues such as the convergence and error estimates of the artificial boundary method have been solved gradually. This paper reviews the development and discusses different forms of the artificial boundary method.