In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid colu...In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius -27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is 〉30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M- PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one do. The optimal parameter space for the maximum value of the linear frequency-shifted factor (a0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to 〈1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.展开更多
As a result of the recently increasing demands on high-performance aero-engine,the machining accuracy of blade profile is becoming more stringent. However,in the current profile,precision milling,grinding or near-nets...As a result of the recently increasing demands on high-performance aero-engine,the machining accuracy of blade profile is becoming more stringent. However,in the current profile,precision milling,grinding or near-netshape technology has to undergo a tedious iterative error compensation. Thus,if the profile error area and boundary can be determined automatically and quickly,it will help to improve the efficiency of subsequent re-machining correction process. To this end,an error boundary intersection approach is presented aiming at the error area determination of complex profile,including the phaseⅠof cross sectional non-rigid registration based on the minimum error area and the phaseⅡof boundary identification based on triangular meshes intersection. Some practical cases are given to demonstrate the effectiveness and superiority of the proposed approach.展开更多
The conventional timing synchronization methods based on time domain correlation have the problems of timing metric plateau in Additive White Gaussian Noise(AWGN) channel and estimation error in multipath fading chann...The conventional timing synchronization methods based on time domain correlation have the problems of timing metric plateau in Additive White Gaussian Noise(AWGN) channel and estimation error in multipath fading channel. To resolve the problems, this paper proposes a novel timing metric using the characteristics of long training symbols in IEEE802.11a and a new timing recovery method based on the new timing metric for Orthogonal Frequency Division MuItiplexing(OFDM)-based WLAN systems. The proposed timing metric is defined as a sum of absolute values of the imaginary parts of all the subcarrier samples. It exhibits a unique characteristic that is very sensitive to the true synchronization point since it has minimum value at the true synchronization point and maximum around the true synchronization point. The simulation results show that the performance of timing synchronization is significantly improved, as a result, the probability of error estimation is lower than 10-4 when Signal-to-Noise Ratio(SNR) is more than 10dB.展开更多
In this work,synchronous cutting of concave and convex surfaces was achieved using the duplex helical method for the hypoid gear,and the problem of tooth surface error correction was studied.First,the mathematical mod...In this work,synchronous cutting of concave and convex surfaces was achieved using the duplex helical method for the hypoid gear,and the problem of tooth surface error correction was studied.First,the mathematical model of the hypoid gears machined by the duplex helical method was established.Second,the coordinates of discrete points on the tooth surface were obtained by measurement center,and the normal errors of the discrete points were calculated.Third,a tooth surface error correction model is established,and the tooth surface error was corrected using the Levenberg-Marquard algorithm with trust region strategy and least square method.Finally,grinding experiments were carried out on the machining parameters obtained by Levenberg-Marquard algorithm with trust region strategy,which had a better effect on tooth surface error correction than the least square method.After the tooth surface error is corrected,the maximum absolute error is reduced from 30.9μm before correction to 6.8μm,the root mean square of the concave error is reduced from 15.1 to 2.1μm,the root mean square of the convex error is reduced from 10.8 to 1.8μm,and the sum of squared errors of the concave and convex surfaces was reduced from 15471 to 358μm^(2).It is verified that the Levenberg-Marquard algorithm with trust region strategy has a good accuracy for the tooth surface error correction of hypoid gear machined by duplex helical method.展开更多
Video transmission over wireless networks has received much attention recently for its restricted bandwidth and high bit-error rate, Based on H.263+, by reversing part stream sequences of each Group Of Block (GOB),...Video transmission over wireless networks has received much attention recently for its restricted bandwidth and high bit-error rate, Based on H.263+, by reversing part stream sequences of each Group Of Block (GOB), an error resilient scheme is presented to improve video robustness without additional bandwidth burden. Error patterns are employed to simulate Widcband Code Division Multiple Acccss,(WCDMA) channels to check out error resilience performances. Simulation results show that both subjective and objective qualities of the reconstructed images are improved remarkably. The mean Peak Signal to Noise Ratio (PSNR) is increased by 0.5dB, and the highest increment is 2dB.展开更多
In the scenario of multiple wireless personal area networks (WPANs) accessing the home area network (HAN), the frequency-shift (FRESH)filter based on the cyclostationary theory is applied for the anti-interferen...In the scenario of multiple wireless personal area networks (WPANs) accessing the home area network (HAN), the frequency-shift (FRESH)filter based on the cyclostationary theory is applied for the anti-interference at the 2. 4 GHz spectrum. The main architecture of multiple WPANs accessing the HAN is proposed. The medium access control( MAC) -level coordination solution applied in the access point (AP)for the coexistence of different communication protocols within WPAN is discussed. The diagram of the adaptive FRESH filter is described. The anti-interference models of the FRESH filter in the scenario of multiple WPANs accessing the HAN are proposed. The minimum mean square error (MMSE)convergence property of the FRESH filter with the change in the data point number is analyzed. The simulation results indicate that the FRESH filter can effectively extract the signal of interest (SOI) from the interference with the partly overlapped spectrum. Thus, the excellent anti-interference performance of the FRESH filter is validated. Moreover, by both theoretical analysis and simulation, the MMSE convergent property of the FRESH filter is also proven.展开更多
The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 H...The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 Hz often exhibit upward warping in data,making geophysical inversion and interpretation challenging.The cumulative error of the crystal oscillator in signal transmission and acquisition contributes to an upturned apparent resistivity curve.To address this,a high-frequency information extraction method is proposed based on time-domain signal reconstruction,which helps to record a complete current data sequence;moreover,it helps estimate the crystal oscillator error for the transmitted signal.Considering the recorded error,a received signal was corrected using a set of reconstruction algorithms.After processing,the high-frequency component of the wide-field electromagnetic data was not upturned,while accurate high-frequency information was extracted from the signal.Therefore,the proposed method helped effectively extract high-frequency components of all wide-field electromagnetic data.展开更多
This letter presents a novel spatial error concealment algorithm for the H.264 video coding. The error concealment algorithm is based on directional interpolation. Mojette transform is used to estimate the orientation...This letter presents a novel spatial error concealment algorithm for the H.264 video coding. The error concealment algorithm is based on directional interpolation. Mojette transform is used to estimate the orientation features of the damaged blocks,and the image is interpolated in the appro-priate directions. The proposed method is compared with bilinear interpolation algorithm in the ref-erence implementation of H.264 and all directional interpolation. Experimental results prove that the proposed algorithm has better subjective and objective image reconstruction quality.展开更多
The subject of the work is to propose a series of papers about adaptive finite element methods based on optimal error control estimate. This paper is the third part in a series of papers on adaptive finite element met...The subject of the work is to propose a series of papers about adaptive finite element methods based on optimal error control estimate. This paper is the third part in a series of papers on adaptive finite element methods based on optimal error estimates for linear elliptic problems on the concave corner domains. In the preceding two papers (part 1:Adaptive finite element method based on optimal error estimate for linear elliptic problems on concave corner domain; part 2:Adaptive finite element method based on optimal error estimate for linear elliptic problems on nonconvex polygonal domains), we presented adaptive finite element methods based on the energy norm and the maximum norm. In this paper, an important result is presented and analyzed. The algorithm for error control in the energy norm and maximum norm in part 1 and part 2 in this series of papers is based on this result.展开更多
基金supported by NSFC(No.41174118)one of the major state S&T special projects(No.2008ZX05020-004)+1 种基金a Postdoctoral Fellowship of China(No.2013M530106)China Scholarship Council(No.2010644006)
文摘In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius -27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is 〉30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M- PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one do. The optimal parameter space for the maximum value of the linear frequency-shifted factor (a0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to 〈1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.
基金supported by the Aeronautical Science Foundation of China (No.20200016112001)。
文摘As a result of the recently increasing demands on high-performance aero-engine,the machining accuracy of blade profile is becoming more stringent. However,in the current profile,precision milling,grinding or near-netshape technology has to undergo a tedious iterative error compensation. Thus,if the profile error area and boundary can be determined automatically and quickly,it will help to improve the efficiency of subsequent re-machining correction process. To this end,an error boundary intersection approach is presented aiming at the error area determination of complex profile,including the phaseⅠof cross sectional non-rigid registration based on the minimum error area and the phaseⅡof boundary identification based on triangular meshes intersection. Some practical cases are given to demonstrate the effectiveness and superiority of the proposed approach.
文摘The conventional timing synchronization methods based on time domain correlation have the problems of timing metric plateau in Additive White Gaussian Noise(AWGN) channel and estimation error in multipath fading channel. To resolve the problems, this paper proposes a novel timing metric using the characteristics of long training symbols in IEEE802.11a and a new timing recovery method based on the new timing metric for Orthogonal Frequency Division MuItiplexing(OFDM)-based WLAN systems. The proposed timing metric is defined as a sum of absolute values of the imaginary parts of all the subcarrier samples. It exhibits a unique characteristic that is very sensitive to the true synchronization point since it has minimum value at the true synchronization point and maximum around the true synchronization point. The simulation results show that the performance of timing synchronization is significantly improved, as a result, the probability of error estimation is lower than 10-4 when Signal-to-Noise Ratio(SNR) is more than 10dB.
基金Projects(52075552,51575533,51805555,11662004)supported by the National Natural Science Foundation of China。
文摘In this work,synchronous cutting of concave and convex surfaces was achieved using the duplex helical method for the hypoid gear,and the problem of tooth surface error correction was studied.First,the mathematical model of the hypoid gears machined by the duplex helical method was established.Second,the coordinates of discrete points on the tooth surface were obtained by measurement center,and the normal errors of the discrete points were calculated.Third,a tooth surface error correction model is established,and the tooth surface error was corrected using the Levenberg-Marquard algorithm with trust region strategy and least square method.Finally,grinding experiments were carried out on the machining parameters obtained by Levenberg-Marquard algorithm with trust region strategy,which had a better effect on tooth surface error correction than the least square method.After the tooth surface error is corrected,the maximum absolute error is reduced from 30.9μm before correction to 6.8μm,the root mean square of the concave error is reduced from 15.1 to 2.1μm,the root mean square of the convex error is reduced from 10.8 to 1.8μm,and the sum of squared errors of the concave and convex surfaces was reduced from 15471 to 358μm^(2).It is verified that the Levenberg-Marquard algorithm with trust region strategy has a good accuracy for the tooth surface error correction of hypoid gear machined by duplex helical method.
基金Li Jian, born in 1978, male, Master candidate. School of Information Engineering, Mailbox 261, Beijing University of Posts and Telecom-munications, Beijing 100876, China. lighter_lj@163.com.
文摘Video transmission over wireless networks has received much attention recently for its restricted bandwidth and high bit-error rate, Based on H.263+, by reversing part stream sequences of each Group Of Block (GOB), an error resilient scheme is presented to improve video robustness without additional bandwidth burden. Error patterns are employed to simulate Widcband Code Division Multiple Acccss,(WCDMA) channels to check out error resilience performances. Simulation results show that both subjective and objective qualities of the reconstructed images are improved remarkably. The mean Peak Signal to Noise Ratio (PSNR) is increased by 0.5dB, and the highest increment is 2dB.
基金The National Basic Research Program of China(973Program)(No.2007CB310606)the National Natural Science Foundation of China(No.60472053)+1 种基金the High Technology Research and Development Program of Jiangsu Province(No.BG2006002)the Specialized Development Foundation for the Achievement Transformation of Jiangsu Province(No.BA2006101)
文摘In the scenario of multiple wireless personal area networks (WPANs) accessing the home area network (HAN), the frequency-shift (FRESH)filter based on the cyclostationary theory is applied for the anti-interference at the 2. 4 GHz spectrum. The main architecture of multiple WPANs accessing the HAN is proposed. The medium access control( MAC) -level coordination solution applied in the access point (AP)for the coexistence of different communication protocols within WPAN is discussed. The diagram of the adaptive FRESH filter is described. The anti-interference models of the FRESH filter in the scenario of multiple WPANs accessing the HAN are proposed. The minimum mean square error (MMSE)convergence property of the FRESH filter with the change in the data point number is analyzed. The simulation results indicate that the FRESH filter can effectively extract the signal of interest (SOI) from the interference with the partly overlapped spectrum. Thus, the excellent anti-interference performance of the FRESH filter is validated. Moreover, by both theoretical analysis and simulation, the MMSE convergent property of the FRESH filter is also proven.
基金Project(42004056)supported by the National Natural Science Foundation of ChinaProject(ZR2020QD052)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2019YFC0604902)supported by the National Key Research and Development Program of China。
文摘The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 Hz often exhibit upward warping in data,making geophysical inversion and interpretation challenging.The cumulative error of the crystal oscillator in signal transmission and acquisition contributes to an upturned apparent resistivity curve.To address this,a high-frequency information extraction method is proposed based on time-domain signal reconstruction,which helps to record a complete current data sequence;moreover,it helps estimate the crystal oscillator error for the transmitted signal.Considering the recorded error,a received signal was corrected using a set of reconstruction algorithms.After processing,the high-frequency component of the wide-field electromagnetic data was not upturned,while accurate high-frequency information was extracted from the signal.Therefore,the proposed method helped effectively extract high-frequency components of all wide-field electromagnetic data.
基金the National Natural Science Foundation of China (No.60472036, 60402036)the Natural Science Foundation of Beijing (No.4042008)the Ph.D. Foundation of Ministry of Education (No.20040005015).
文摘This letter presents a novel spatial error concealment algorithm for the H.264 video coding. The error concealment algorithm is based on directional interpolation. Mojette transform is used to estimate the orientation features of the damaged blocks,and the image is interpolated in the appro-priate directions. The proposed method is compared with bilinear interpolation algorithm in the ref-erence implementation of H.264 and all directional interpolation. Experimental results prove that the proposed algorithm has better subjective and objective image reconstruction quality.
文摘The subject of the work is to propose a series of papers about adaptive finite element methods based on optimal error control estimate. This paper is the third part in a series of papers on adaptive finite element methods based on optimal error estimates for linear elliptic problems on the concave corner domains. In the preceding two papers (part 1:Adaptive finite element method based on optimal error estimate for linear elliptic problems on concave corner domain; part 2:Adaptive finite element method based on optimal error estimate for linear elliptic problems on nonconvex polygonal domains), we presented adaptive finite element methods based on the energy norm and the maximum norm. In this paper, an important result is presented and analyzed. The algorithm for error control in the energy norm and maximum norm in part 1 and part 2 in this series of papers is based on this result.