期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于人工神经网络的风电场建模 被引量:10
1
作者 马幼捷 杨海珊 +2 位作者 周雪松 李季 问虎龙 《中国电力》 CSCD 北大核心 2010年第9期79-82,共4页
风电场模型对风电场和电力系统的运行都具有重要意义。为克服机理建模方法的不足,在论述神经网络建模原理基础上,采用误差反向传播(BP)网络拟合风电场的静态特性模型;在神经网络静态模型的基础上,进一步建立动态实时仿真模型。通过数据... 风电场模型对风电场和电力系统的运行都具有重要意义。为克服机理建模方法的不足,在论述神经网络建模原理基础上,采用误差反向传播(BP)网络拟合风电场的静态特性模型;在神经网络静态模型的基础上,进一步建立动态实时仿真模型。通过数据样本进行预处理、训练和测试,使得网络模型达到精度要求,确定每层的权值,从而能很好地拟合建模对象的性能。用采集到的另一些数据进行验证,且与实际结果进行比较,以验证智能建模方法的可行性和优越性。 展开更多
关键词 风电场 神经网络建模 误差方向传播网络
下载PDF
Developing energy forecasting model using hybrid artificial intelligence method
2
作者 Shahram Mollaiy-Berneti 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3026-3032,共7页
An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accur... An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation(BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand(gross domestic product(GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand(population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error. 展开更多
关键词 energy demand artificial neural network back-propagation algorithm imperialist competitive algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部