期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
尘埃粒子计数器校准结果及其应用探讨
1
作者 李现红 周中木 《计量与测试技术》 2020年第5期55-57,共3页
本文对尘埃粒子计数器粒子浓度示值误差校准结果的计算进行了讨论,并以制药行业中尘埃粒子计数器的使用为例对尘埃粒子计数器校准结果的应用进行了探讨。
关键词 尘埃粒子计数器 粒子浓度示值误差 实际应用
下载PDF
尘埃粒子计数器测量值的不确定度评定
2
作者 郭洪波 韩婷 《计量与测试技术》 2015年第8期59-61,共3页
尘埃粒子计数器是利用光的散射原理,对空气中的尘埃粒子数目和粒径进行计量,当一个尘埃粒子通过时,便把入射光散射一次,产生一个光脉冲信号,经过放大、甄别,筛选出需要的信号,再通过计数系统显示出来,电脉冲信号的高度反映粒子的大小,... 尘埃粒子计数器是利用光的散射原理,对空气中的尘埃粒子数目和粒径进行计量,当一个尘埃粒子通过时,便把入射光散射一次,产生一个光脉冲信号,经过放大、甄别,筛选出需要的信号,再通过计数系统显示出来,电脉冲信号的高度反映粒子的大小,信号的数量反映了粒子的个数。 展开更多
关键词 尘埃粒子计数器 流量误差 粒径分布误差 粒子浓度示值误差
下载PDF
梯级水电站水库群调度函数优化模型研究 被引量:1
3
作者 黄海涛 王丽萍 +2 位作者 喻杉 张验科 吴月秋 《人民长江》 北大核心 2013年第23期67-69,72,共4页
针对梯级水电站水库群初始调度函数受数值模拟技术限制的特点,以减小其固有的误差累积效应为目的,建立了基于粒子群算法的调度函数优化模型。该模型充分保留了初始调度函数中的影响因子和常数系数的作用,在传统粒子构造基础上给出了误... 针对梯级水电站水库群初始调度函数受数值模拟技术限制的特点,以减小其固有的误差累积效应为目的,建立了基于粒子群算法的调度函数优化模型。该模型充分保留了初始调度函数中的影响因子和常数系数的作用,在传统粒子构造基础上给出了误差粒子的构造方法,有利于较快得到模型的最优解。实例计算分析表明,利用该模型得到的调度函数进行梯级水电站水库群的调度,运行效益明显提高,验证了模型的实用性和有效性,为更好地挖掘梯级水电站水库群的潜在效益提供了理论支撑。 展开更多
关键词 调度函数 粒子群算法 误差粒子 优化模型 梯级水电站调度
下载PDF
Lower bound estimation of the maximum allowable initial error and its numerical calculation
4
作者 CAO Yi-Xing ZHENG Qin YAN Jun 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第5期438-443,共6页
In the numerical prediction of weather or climate events,the uncertainty of the initial values and/or prediction models can bring the forecast result’s uncertainty.Due to the absence of true states,studies on this pr... In the numerical prediction of weather or climate events,the uncertainty of the initial values and/or prediction models can bring the forecast result’s uncertainty.Due to the absence of true states,studies on this problem mainly focus on the three subproblems of predictability,i.e.,the lower bound of the maximum predictable time,the upper bound of the prediction error,and the lower bound of the maximum allowable initial error.Aimed at the problem of the lower bound estimation of the maximum allowable initial error,this study first illustrates the shortcoming of the existing estimation,and then presents a new estimation based on the initial observation precision and proves it theoretically.Furthermore,the new lower bound estimations of both the two-dimensional ikeda model and lorenz96 model are obtained by using the cnop(conditional nonlinear optimal perturbation)method and a pso(particle swarm optimization)algorithm,and the estimated precisions are also analyzed.Besides,the estimations yielded by the existing and new formulas are compared;the results show that the estimations produced by the existing formula are often incorrect. 展开更多
关键词 Predictability problem maximum allowable initial error particle swarm optimization algorithm Conditional Nonlinear Optimal Perturbation(CNOP)
下载PDF
On the sensitive areas for targeted observations in ENSO forecasting
5
作者 Jingjing Zhang Shujuan Hu Wansuo Duan 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第5期19-23,共5页
Using the outputs from CMCC-CM in CMIP5 experiments,the authors identified sensitive areas for targeted observations in ENSO forecasting from the perspective of the initial error growth(IEG)method and the particle fil... Using the outputs from CMCC-CM in CMIP5 experiments,the authors identified sensitive areas for targeted observations in ENSO forecasting from the perspective of the initial error growth(IEG)method and the particle filter(PF)method.Results showed that the PF targets areas over the central-eastern equatorial Pacific,while the sensitive areas determined by the IEG method are slightly to the east of the former.Although a small part of the areas targeted by the IEG method also lie in the southeast equatorial Pacific,this does not affect the large-scale overlapping of the sensitive areas determined by these two methods in the eastern equatorial Pacific.Therefore,sensitive areas determined by the two methods are mutually supportive.When considering the uncertainty of methods for determining sensitive areas in realistic targeted observation,it is more reasonable to choose the above overlapping areas as sensitive areas for ENSO forecasting.This result provides scientific guidance for how to better determine sensitive areas for ENSO forecasting. 展开更多
关键词 Targeted observation ENSO Particle filter Initial error
下载PDF
Prediction of thermal conductivity of polymer-based composites by using support vector regression 被引量:2
6
作者 WANG GuiLian CAI CongZhong +1 位作者 PEI JunFang ZHU XingJian 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第5期878-883,共6页
Support vector regression (SVR) combined with particle swarm optimization (PSO) for its parameter optimization, was proposed to establish a model to predict the thermal conductivity of polymer-based composites under d... Support vector regression (SVR) combined with particle swarm optimization (PSO) for its parameter optimization, was proposed to establish a model to predict the thermal conductivity of polymer-based composites under different mass fractions of fillers (mass fraction of polyethylene (PE) and mass fraction of polystyrene (PS)). The prediction performance of SVR was compared with those of other two theoretical models of spherical packing and flake packing. The result demonstrated that the estimated errors by leave-one-out cross validation (LOOCV) test of SVR models, such as mean absolute error (MAE) and mean absolute percentage error (MAPE), all are smaller than those achieved by the two theoretical models via applying identical samples. It is revealed that the generalization ability of SVR model is superior to those of the two theoretical models. This study suggests that SVR can be used as a powerful approach to foresee the thermal property of polymer-based composites under different mass fractions of polyethylene and polystyrene fillers. 展开更多
关键词 polymer matrix composites thermal conductivity support vector regression regression analysis PREDICTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部