针对观测数据含有异常粗差且无多余观测的应用情形,提出一种顾及观测质量信息的自适应抗差Kalman滤波方法。该方法两步计算得到自适应因子和抗差等价权矩阵,即首先利用顾及观测质量信息的抗差Kalman滤波得到消除观测粗差影响的参数估计...针对观测数据含有异常粗差且无多余观测的应用情形,提出一种顾及观测质量信息的自适应抗差Kalman滤波方法。该方法两步计算得到自适应因子和抗差等价权矩阵,即首先利用顾及观测质量信息的抗差Kalman滤波得到消除观测粗差影响的参数估计值,然后根据该值构造动力学模型误差判别统计量并计算自适应因子。以某边坡GPS变形监测数据序列处理为例,利用RPDOP(Relative Position Dilution of Precision)值作为观测质量信息进行处理分析,结果表明该方法能够有效控制动力学模型误差和观测粗差对滤波估值的影响。展开更多
Conventional multivariate statistical methods for process monitoring may not be suitable for dynamic processes since they usually rely on assumptions such as time invariance or uncorrelation. We are therefore motivate...Conventional multivariate statistical methods for process monitoring may not be suitable for dynamic processes since they usually rely on assumptions such as time invariance or uncorrelation. We are therefore motivated to propose a new monitoring method by compensating the principal component analysis with a weight approach.The proposed monitor consists of two tiers. The first tier uses the principal component analysis method to extract cross-correlation structure among process data, expressed by independent components. The second tier estimates auto-correlation structure among the extracted components as auto-regressive models. It is therefore named a dynamic weighted principal component analysis with hybrid correlation structure. The essential of the proposed method is to incorporate a weight approach into principal component analysis to construct two new subspaces, namely the important component subspace and the residual subspace, and two new statistics are defined to monitor them respectively. Through computing the weight values upon a new observation, the proposed method increases the weights along directions of components that have large estimation errors while reduces the influences of other directions. The rationale behind comes from the observations that the fault information is associated with online estimation errors of auto-regressive models. The proposed monitoring method is exemplified by the Tennessee Eastman process. The monitoring results show that the proposed method outperforms conventional principal component analysis, dynamic principal component analysis and dynamic latent variable.展开更多
This study models supply response for major agricultural crops in Nigeria which include the standard arguments and price risk. The data comes from Central Bank of Nigeria annual reports and statement of account, Natio...This study models supply response for major agricultural crops in Nigeria which include the standard arguments and price risk. The data comes from Central Bank of Nigeria annual reports and statement of account, National Bureau of Statistics' abstract of statistics and annual Agricultural survey manual. The data are analyzed using autoregressive distributed lag and cointegration and error correction models. The results indicate that producers are responsive not only to price but also to price risk and exchange rate.展开更多
The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic ...The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power.展开更多
This paper analyzes the problem of testing for parameters change in ARCH errors models with deterministic trend based on residual cusum test. It is shown that the asymptotically limiting distribution of the residual c...This paper analyzes the problem of testing for parameters change in ARCH errors models with deterministic trend based on residual cusum test. It is shown that the asymptotically limiting distribution of the residual cusum test statistic is still the sup of a standard Brownian bridge under null hypothesis. In order to check this, we carry out a Monte Carlo simulation and examine the return of IBM data. The results from both simulation and real data analysis support our claim. We also can explain this phenomenon from a theoretical viewpoint that the variance in ARCH model in mainly determined by its parameters.展开更多
文摘针对观测数据含有异常粗差且无多余观测的应用情形,提出一种顾及观测质量信息的自适应抗差Kalman滤波方法。该方法两步计算得到自适应因子和抗差等价权矩阵,即首先利用顾及观测质量信息的抗差Kalman滤波得到消除观测粗差影响的参数估计值,然后根据该值构造动力学模型误差判别统计量并计算自适应因子。以某边坡GPS变形监测数据序列处理为例,利用RPDOP(Relative Position Dilution of Precision)值作为观测质量信息进行处理分析,结果表明该方法能够有效控制动力学模型误差和观测粗差对滤波估值的影响。
基金Supported by the National Natural Science Foundation of China(61174114)the Research Fund for the Doctoral Program of Higher Education in China(20120101130016)+1 种基金the Natural Science Foundation of Zhejiang Province(LQ15F030006)and the Science and Technology Program Project of Zhejiang Province(2015C33033)
文摘Conventional multivariate statistical methods for process monitoring may not be suitable for dynamic processes since they usually rely on assumptions such as time invariance or uncorrelation. We are therefore motivated to propose a new monitoring method by compensating the principal component analysis with a weight approach.The proposed monitor consists of two tiers. The first tier uses the principal component analysis method to extract cross-correlation structure among process data, expressed by independent components. The second tier estimates auto-correlation structure among the extracted components as auto-regressive models. It is therefore named a dynamic weighted principal component analysis with hybrid correlation structure. The essential of the proposed method is to incorporate a weight approach into principal component analysis to construct two new subspaces, namely the important component subspace and the residual subspace, and two new statistics are defined to monitor them respectively. Through computing the weight values upon a new observation, the proposed method increases the weights along directions of components that have large estimation errors while reduces the influences of other directions. The rationale behind comes from the observations that the fault information is associated with online estimation errors of auto-regressive models. The proposed monitoring method is exemplified by the Tennessee Eastman process. The monitoring results show that the proposed method outperforms conventional principal component analysis, dynamic principal component analysis and dynamic latent variable.
文摘This study models supply response for major agricultural crops in Nigeria which include the standard arguments and price risk. The data comes from Central Bank of Nigeria annual reports and statement of account, National Bureau of Statistics' abstract of statistics and annual Agricultural survey manual. The data are analyzed using autoregressive distributed lag and cointegration and error correction models. The results indicate that producers are responsive not only to price but also to price risk and exchange rate.
基金supported by the National Natural Science Foundation of China under Grant Nos. 10871217 and 40574003the Science and Technology Project of Chongqing Education Committee under Grant No. KJ080609+1 种基金the Doctor's Start-up Research Fund under Grant No. 08-52204the Youth Science Research Fund of Chongging Technology and Business University under Grant No. 0852008
文摘The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power.
基金the National Natural Science Foundation of China (Nos.60375003 60972150)the Science and Technology Innovation Foundation of Northwestern Polytechnical University (No.2007KJ01033)
文摘This paper analyzes the problem of testing for parameters change in ARCH errors models with deterministic trend based on residual cusum test. It is shown that the asymptotically limiting distribution of the residual cusum test statistic is still the sup of a standard Brownian bridge under null hypothesis. In order to check this, we carry out a Monte Carlo simulation and examine the return of IBM data. The results from both simulation and real data analysis support our claim. We also can explain this phenomenon from a theoretical viewpoint that the variance in ARCH model in mainly determined by its parameters.