针对互耦条件下均匀线阵(Uniform Linear Array,ULA),该文基于交替迭代提出一种适用于混合信号模型的波达方向(Direction of Arrival,DoA)与互耦误差估计算法。算法首先利用ULA互耦矩阵的带状Toeplitz结构,提出一种基于门限的非相干信源...针对互耦条件下均匀线阵(Uniform Linear Array,ULA),该文基于交替迭代提出一种适用于混合信号模型的波达方向(Direction of Arrival,DoA)与互耦误差估计算法。算法首先利用ULA互耦矩阵的带状Toeplitz结构,提出一种基于门限的非相干信源DoA估计方法,进而实现互耦误差初步估计;在此基础上,以交互迭代方式实现混合信号DoA估计及互耦误差更新。算法最多只需二次交互迭代,就可实现收敛。计算机仿真结果表明:该算法在较少接收快拍数及低信噪比情况下,均具有良好的DoA及互耦误差估计性能。展开更多
针对阵元之间存在互耦误差,阵列流型会出现一定程度的偏差和扰动的问题,提出了基于MUSIC(MUlti-ple SIgnal Classification)迭代法的互耦误差自校正算法及在互耦误差条件下的DOA(Direction of Arrival)估计算法。利用MUSIC迭代法对波达...针对阵元之间存在互耦误差,阵列流型会出现一定程度的偏差和扰动的问题,提出了基于MUSIC(MUlti-ple SIgnal Classification)迭代法的互耦误差自校正算法及在互耦误差条件下的DOA(Direction of Arrival)估计算法。利用MUSIC迭代法对波达方向和互耦误差同时进行估计。该算法能够在互耦误差存在的情况下,有效地估计出波达方向和互耦矩阵,仿真实验证明了该算法的有效性。展开更多
当阵列天线存在互耦效应时,传统多重信号分类(MUltiple SIgnal Classification,MUSIC)算法的测向性能急剧下降。为了有效估计阵列互耦矩阵(MCM)与入射信号的波达方向(Direction Of Arrival,DOA),该文提出一种阵列互耦矩阵与波达方向的...当阵列天线存在互耦效应时,传统多重信号分类(MUltiple SIgnal Classification,MUSIC)算法的测向性能急剧下降。为了有效估计阵列互耦矩阵(MCM)与入射信号的波达方向(Direction Of Arrival,DOA),该文提出一种阵列互耦矩阵与波达方向的级联估计方法。利用互耦矩阵的结构特点,变换阵列流形,实现对互耦矩阵与DOA的解耦合。求解线性约束下的二次优化问题,利用谱峰搜索,得到阵列互耦矩阵和入射信号DOA,完成互耦误差自校正。通过计算机仿真验证了该文方法估计性能的有效性和优越性。展开更多
针对非均匀线阵(non-uniform linear array,NULA)互耦问题进行了研究。与均匀线阵(uniform Linear array,ULA)不同的是,NULA的互耦矩阵并不具有带状对称Toeplitz的特性,因而处理起来更为复杂。首先,根据阵列结构的特点,可将其互耦矩阵...针对非均匀线阵(non-uniform linear array,NULA)互耦问题进行了研究。与均匀线阵(uniform Linear array,ULA)不同的是,NULA的互耦矩阵并不具有带状对称Toeplitz的特性,因而处理起来更为复杂。首先,根据阵列结构的特点,可将其互耦矩阵转换为两个具有Toeplitz特性矩阵相减的形式,从而方便实现角度和互耦系数的解耦合。而后结合子空间原理,同时估计信号的波达方向(direction of arrival,DOA)和互耦系数。算法无需额外的校正源,也不需要非线性的高维搜索和迭代过程,计算量小。仿真结果表明,所提算法能够很好地估计出信号角度和互耦误差系数,具有精度高、分辨力强的特点,可以有效地解决此类NULA的互耦问题。展开更多
针对互耦误差下,空间谱估计类算法对相干信号的波达方向(Direction of Arrival,DOA)估计性能下降的问题,提出一种基于Toeplize预处理及改进秩损估计器的解相干和解耦合方法.首先对协方差矩阵斜对角线元素求平均,进行Toeplize预处理,实...针对互耦误差下,空间谱估计类算法对相干信号的波达方向(Direction of Arrival,DOA)估计性能下降的问题,提出一种基于Toeplize预处理及改进秩损估计器的解相干和解耦合方法.首先对协方差矩阵斜对角线元素求平均,进行Toeplize预处理,实现解相干;其次利用互耦系数和位置矩阵表示互耦矩阵,进一步变换阵列流形,将信号的角度信息独立于互耦系数,实现解耦合;最后使用改进的秩损估计器,利用谱峰搜索,估计入射信号的DOA.计算机仿真实验验证了本文解相干和解耦合方法的有效性和优越性,而且在低信噪比及小快拍数下依然具有优良的估计性能.展开更多
针对轮换迭代算法在混合互耦误差和幅相误差条件下存在估计精度不高的问题,提出了一种改进非迭代多重信号分类(improved non-iterative multiple signal classification,INI-MUSIC)算法.改进算法利用误差系数在均匀圆阵下的特殊性质和...针对轮换迭代算法在混合互耦误差和幅相误差条件下存在估计精度不高的问题,提出了一种改进非迭代多重信号分类(improved non-iterative multiple signal classification,INI-MUSIC)算法.改进算法利用误差系数在均匀圆阵下的特殊性质和矩阵向量转换定理,将幅相误差和互耦误差与波达方向(direction of arrival,DOA)估计角度分离,从而实现混合误差下的降维操作,进而通过重新构造代价谱峰函数对亏损的秩进行补偿,实现对DOA角度的估计和对误差系数的联合估计.此算法降低了混合误差条件下错误谱峰出现的概率,具有更好的二维DOA估计精度,工程应用价值更高.展开更多
文摘针对互耦条件下均匀线阵(Uniform Linear Array,ULA),该文基于交替迭代提出一种适用于混合信号模型的波达方向(Direction of Arrival,DoA)与互耦误差估计算法。算法首先利用ULA互耦矩阵的带状Toeplitz结构,提出一种基于门限的非相干信源DoA估计方法,进而实现互耦误差初步估计;在此基础上,以交互迭代方式实现混合信号DoA估计及互耦误差更新。算法最多只需二次交互迭代,就可实现收敛。计算机仿真结果表明:该算法在较少接收快拍数及低信噪比情况下,均具有良好的DoA及互耦误差估计性能。
文摘针对阵元之间存在互耦误差,阵列流型会出现一定程度的偏差和扰动的问题,提出了基于MUSIC(MUlti-ple SIgnal Classification)迭代法的互耦误差自校正算法及在互耦误差条件下的DOA(Direction of Arrival)估计算法。利用MUSIC迭代法对波达方向和互耦误差同时进行估计。该算法能够在互耦误差存在的情况下,有效地估计出波达方向和互耦矩阵,仿真实验证明了该算法的有效性。
文摘当阵列天线存在互耦效应时,传统多重信号分类(MUltiple SIgnal Classification,MUSIC)算法的测向性能急剧下降。为了有效估计阵列互耦矩阵(MCM)与入射信号的波达方向(Direction Of Arrival,DOA),该文提出一种阵列互耦矩阵与波达方向的级联估计方法。利用互耦矩阵的结构特点,变换阵列流形,实现对互耦矩阵与DOA的解耦合。求解线性约束下的二次优化问题,利用谱峰搜索,得到阵列互耦矩阵和入射信号DOA,完成互耦误差自校正。通过计算机仿真验证了该文方法估计性能的有效性和优越性。
文摘针对非均匀线阵(non-uniform linear array,NULA)互耦问题进行了研究。与均匀线阵(uniform Linear array,ULA)不同的是,NULA的互耦矩阵并不具有带状对称Toeplitz的特性,因而处理起来更为复杂。首先,根据阵列结构的特点,可将其互耦矩阵转换为两个具有Toeplitz特性矩阵相减的形式,从而方便实现角度和互耦系数的解耦合。而后结合子空间原理,同时估计信号的波达方向(direction of arrival,DOA)和互耦系数。算法无需额外的校正源,也不需要非线性的高维搜索和迭代过程,计算量小。仿真结果表明,所提算法能够很好地估计出信号角度和互耦误差系数,具有精度高、分辨力强的特点,可以有效地解决此类NULA的互耦问题。
文摘针对互耦误差下,空间谱估计类算法对相干信号的波达方向(Direction of Arrival,DOA)估计性能下降的问题,提出一种基于Toeplize预处理及改进秩损估计器的解相干和解耦合方法.首先对协方差矩阵斜对角线元素求平均,进行Toeplize预处理,实现解相干;其次利用互耦系数和位置矩阵表示互耦矩阵,进一步变换阵列流形,将信号的角度信息独立于互耦系数,实现解耦合;最后使用改进的秩损估计器,利用谱峰搜索,估计入射信号的DOA.计算机仿真实验验证了本文解相干和解耦合方法的有效性和优越性,而且在低信噪比及小快拍数下依然具有优良的估计性能.
文摘针对轮换迭代算法在混合互耦误差和幅相误差条件下存在估计精度不高的问题,提出了一种改进非迭代多重信号分类(improved non-iterative multiple signal classification,INI-MUSIC)算法.改进算法利用误差系数在均匀圆阵下的特殊性质和矩阵向量转换定理,将幅相误差和互耦误差与波达方向(direction of arrival,DOA)估计角度分离,从而实现混合误差下的降维操作,进而通过重新构造代价谱峰函数对亏损的秩进行补偿,实现对DOA角度的估计和对误差系数的联合估计.此算法降低了混合误差条件下错误谱峰出现的概率,具有更好的二维DOA估计精度,工程应用价值更高.