期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
二维多传感器误差配准算法分析 被引量:1
1
作者 朱洪伟 周灿铠 +1 位作者 唐小明 何友 《空军预警学院学报》 2013年第1期36-38,43,共4页
针对二维多传感器误差配准问题,研究目前已有的典型的系统误差估计算法,包括实时质量控制法、最小二乘法、广义最小二乘法、基于Kalman滤波的实时误差配准算法和精确极大似然法等.首先分析比较这几种算法的模型和原理,然后建立一个合理... 针对二维多传感器误差配准问题,研究目前已有的典型的系统误差估计算法,包括实时质量控制法、最小二乘法、广义最小二乘法、基于Kalman滤波的实时误差配准算法和精确极大似然法等.首先分析比较这几种算法的模型和原理,然后建立一个合理的仿真环境对各种算法中的系统误差估计性能进行仿真比较,最后分析各个算法的性能及其优缺点,为实际应用中根据不同环境选择不同算法提供一种可靠的参考依据. 展开更多
关键词 二维多传感器 最小二乘法 广义最小二乘法 实时误差配准算法 精确极大似然法
下载PDF
基于回归神经网络误差配准算法的仿真实现
2
作者 黄玲芳 《计算机仿真》 CSCD 北大核心 2010年第7期171-174,共4页
在网络系统优化问题的研究中,目前广泛使用的BP网络模型不能保证收敛到全局最小点,这给网络传输带来误差。为消除网络误差,提高收敛速度,在BP网络加入反馈信号生成内部递归神经网络的误差配准算法。算法在内部递归神经网络引入上次输出... 在网络系统优化问题的研究中,目前广泛使用的BP网络模型不能保证收敛到全局最小点,这给网络传输带来误差。为消除网络误差,提高收敛速度,在BP网络加入反馈信号生成内部递归神经网络的误差配准算法。算法在内部递归神经网络引入上次输出的结果,加入先验知识,提高了收敛速度。同时文中对有偏差单元的递归神经网络的误差反向传播学习规则进行了推导,使得网络的累积误差不大于要求值。通过民用航空领域雷达网系统仿真数据仿真表明,算法在消除雷达网系统误差、提高目标精度,对网络系统优化可以取得较好的效果。 展开更多
关键词 回归神经网络 误差配准算法 雷达 仿真
下载PDF
基于回归神经网络的误差配准算法
3
作者 黄玲芳 万佩真 《南昌高专学报》 2009年第2期163-165,共3页
神经网络系统理论已受到广泛关注,它的理论和方法已被应用到许多研究领域。本文介绍了神经网络雷达配准原理,并推导了基于回归神经网络的误差配准算法。
关键词 回归神经网络 误差 误差配准算法
下载PDF
Novel registration algorithm for 3-D images captured from multiple views of object surface
4
作者 衡伟 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期411-413,共3页
A novel algorithm of 3-D surface image registration is proposed. It makes use of the array information of 3-D points and takes vector/vertex-like features as the basis of the matching. That array information of 3-D po... A novel algorithm of 3-D surface image registration is proposed. It makes use of the array information of 3-D points and takes vector/vertex-like features as the basis of the matching. That array information of 3-D points can be easily obtained when capturing original 3-D images. The iterative least-mean-squared (LMS) algorithm is applied to optimizing adaptively the transformation matrix parameters. These can effectively improve the registration performance and hurry up the matching process. Experimental results show that it can reach a good subjective impression on aligned 3-D images. Although the algorithm focuses primarily on the human head model, it can also be used for other objects with small modifications. 展开更多
关键词 image alignment 3-D image 3-D capture image registration iterative least-mean-squared algorithm
下载PDF
Simulation research on a minimum root-mean-square error rotation-fitting algorithm for gravity matching navigation 被引量:12
5
作者 WANG HuBiao WANG Yong +2 位作者 FANG Jian CHAI Hua ZHENG Hui 《Science China Earth Sciences》 SCIE EI CAS 2012年第1期90-97,共8页
Gravity/inertial combination navigation is a leading issue in realizing passive navigation onboard a submarine. A new rotation-fitting gravity matching algorithm, based on the Terrain Contour Matching (TERCOM) algorit... Gravity/inertial combination navigation is a leading issue in realizing passive navigation onboard a submarine. A new rotation-fitting gravity matching algorithm, based on the Terrain Contour Matching (TERCOM) algorithm, is proposed in this paper. The algorithm is based on the principle of least mean-square-error criterion, and searches for a certain matched trajectory that runs parallel to a trace indicated by an inertial navigation system on a gravity base map. A rotation is then made clockwise or counterclockwise through a certain angle around the matched trajectory to look for an optimal matched trajectory within a certain angle span range, and through weighted fitting with another eight suboptimal matched trajectories, the endpoint of the fitted trajectory is considered the optimal matched position. In analysis of the algorithm reliability and matching error, the results from simulation indicate that the optimal position can be obtained effectively in real time, and the positioning accuracy improves by 35% and up to 1.05 nautical miles using the proposed algorithm compared with using the widely employed TERCOM and SITAN methods. Current gravity-aided navigation can benefit from implementation of this new algorithm in terms of better reliability and positioning accuracy. 展开更多
关键词 Terrain Contour Matching algorithm minimum root-mean-square error rotation of coordinates weighted fit gravityaided navigation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部