In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(...In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.展开更多
This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△...This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.展开更多
In this paper, a class of explicit difference schemes with parameters for solving five-dimensional heat-conduction equation are constructed and studied.the truncation error reaches O(τ^2+ h%4), and the stability c...In this paper, a class of explicit difference schemes with parameters for solving five-dimensional heat-conduction equation are constructed and studied.the truncation error reaches O(τ^2+ h%4), and the stability condition is given. Finally, the numerical examples and numerical results are presented to show the advantage of the schemes and the correctness of theoretical analysis.展开更多
A new so called truncation error reduction method (TERM) is developed in this work. This is an iterative process which uses a coarse grid (2 h ) to estimate the truncation error and then reduces the error on the or...A new so called truncation error reduction method (TERM) is developed in this work. This is an iterative process which uses a coarse grid (2 h ) to estimate the truncation error and then reduces the error on the original grid ( h ). The purpose is to use coarse grids to get more accurate results and to develop a new method which could do coarse grid direct numerical simulation (DNS) for more accurate and acceptable DNS solutions.展开更多
This paper presents a Modified Formula for Cotes rule with fifths derivatives of endpoint and its truncation error. It also displays an analysis on convergence order of compound formula. Though compound modified formu...This paper presents a Modified Formula for Cotes rule with fifths derivatives of endpoint and its truncation error. It also displays an analysis on convergence order of compound formula. Though compound modified formula for Cotes rule with endpoint derivatives just calculates a newly-added fifths derivative of the two endpoints for each time compared with compound Cotes formula calculation, there are 2 more ranks of the convergence order in this modified formula. Examples of numerical calculation have validated theoretical analysis.展开更多
A class of two-level high-order accuracy explicit difference scheme for solving 3-D parabolic P.D.E is constructed. Its truncation error is (Δt2+Δx4) and the stability condition is r=Δt/Δx2=Δt/Δy2=Δt/Δz2≤1/6.
The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equatio...The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equations were solved by the minimal least square method (viz. general inverse method). It demonstrates that the feasibility and the accuracy of the present approach were impoved significantly, compared with the result of unimproved damage identification.展开更多
The KBM method is effective in solving nonlinear problems.Unfortunately,the traditional KBM method strongly depends on a small parameter,which does not exist in most of the practice physical systems.Therefore this met...The KBM method is effective in solving nonlinear problems.Unfortunately,the traditional KBM method strongly depends on a small parameter,which does not exist in most of the practice physical systems.Therefore this method is limited to dealing with the system with strong nonlinearity.In this paper we present a procedure to study the resonance solutions of the system with strong nonlinearities by employing the homotopy analysis technique to extend the KBM method to the strong nonlinear systems,and we also analyze the truncation error of the procedure.Applied to a given example,the procedure shows the efficiencies in studying bifurcation.展开更多
It is the main aim of this paper to investigate the numerical methods of the radiative transfer equation. Using the five-point formula to approximate the differential part and the Simpson formula to substitute for int...It is the main aim of this paper to investigate the numerical methods of the radiative transfer equation. Using the five-point formula to approximate the differential part and the Simpson formula to substitute for integral part respectively, a new high-precision numerical scheme, which has 4-order local truncation error, is obtained. Subsequently, a numerical example for radiative transfer equation is carried out, and the calculation results show that the new numerical scheme is more accurate.展开更多
文摘In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.
文摘This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.
基金Supported by NSF of the Education Department of Henan Province(20031100010)
文摘In this paper, a class of explicit difference schemes with parameters for solving five-dimensional heat-conduction equation are constructed and studied.the truncation error reaches O(τ^2+ h%4), and the stability condition is given. Finally, the numerical examples and numerical results are presented to show the advantage of the schemes and the correctness of theoretical analysis.
文摘A new so called truncation error reduction method (TERM) is developed in this work. This is an iterative process which uses a coarse grid (2 h ) to estimate the truncation error and then reduces the error on the original grid ( h ). The purpose is to use coarse grids to get more accurate results and to develop a new method which could do coarse grid direct numerical simulation (DNS) for more accurate and acceptable DNS solutions.
文摘This paper presents a Modified Formula for Cotes rule with fifths derivatives of endpoint and its truncation error. It also displays an analysis on convergence order of compound formula. Though compound modified formula for Cotes rule with endpoint derivatives just calculates a newly-added fifths derivative of the two endpoints for each time compared with compound Cotes formula calculation, there are 2 more ranks of the convergence order in this modified formula. Examples of numerical calculation have validated theoretical analysis.
文摘A class of two-level high-order accuracy explicit difference scheme for solving 3-D parabolic P.D.E is constructed. Its truncation error is (Δt2+Δx4) and the stability condition is r=Δt/Δx2=Δt/Δy2=Δt/Δz2≤1/6.
文摘The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equations were solved by the minimal least square method (viz. general inverse method). It demonstrates that the feasibility and the accuracy of the present approach were impoved significantly, compared with the result of unimproved damage identification.
基金supported by the National Natural Science Foundation of China (Grant No.10632040)
文摘The KBM method is effective in solving nonlinear problems.Unfortunately,the traditional KBM method strongly depends on a small parameter,which does not exist in most of the practice physical systems.Therefore this method is limited to dealing with the system with strong nonlinearity.In this paper we present a procedure to study the resonance solutions of the system with strong nonlinearities by employing the homotopy analysis technique to extend the KBM method to the strong nonlinear systems,and we also analyze the truncation error of the procedure.Applied to a given example,the procedure shows the efficiencies in studying bifurcation.
基金Supported by the Youth Foundation of Beijing University of Chemical Technology under Grant No. QN0622
文摘It is the main aim of this paper to investigate the numerical methods of the radiative transfer equation. Using the five-point formula to approximate the differential part and the Simpson formula to substitute for integral part respectively, a new high-precision numerical scheme, which has 4-order local truncation error, is obtained. Subsequently, a numerical example for radiative transfer equation is carried out, and the calculation results show that the new numerical scheme is more accurate.