In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with tin.delays. Based on a Lyapunov-Krasovskii functional and the stochastic stabilit...In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with tin.delays. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, several sufficient conditions are derived in order to guarantee the global asymptotic convergence of the equilibtium paint in the mean square. Investigation shows that the addressed stochastic highorder delayed neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities (LMIs). Hence, the global asymptotic stability of the studied stochastic high-order delayed neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria.展开更多
Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter wit...Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter with multiple structure elements was designed to process measured displacement time series with adaptive multi-scale decoupling.Whereafter,functional-coefficient auto regressive (FAR) models were established for the random subsequences.Meanwhile,the trend subsequence was processed by least squares support vector machine (LSSVM) algorithm.Finally,extrapolation results obtained were superposed to get the ultimate prediction result.Case study and comparative analysis demonstrate that the presented method can optimize training samples and show a good nonlinear predicting performance with low risk of choosing wrong algorithms.Mean absolute percentage error (MAPE) and root mean square error (RMSE) of the MM-FAR&LSSVM predicting results are as low as 1.670% and 0.172 mm,respectively,which means that the prediction accuracy are improved significantly.展开更多
文摘In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with tin.delays. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, several sufficient conditions are derived in order to guarantee the global asymptotic convergence of the equilibtium paint in the mean square. Investigation shows that the addressed stochastic highorder delayed neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities (LMIs). Hence, the global asymptotic stability of the studied stochastic high-order delayed neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria.
基金Project(20090162120084)supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject(08JJ4014)supported by the Natural Science Foundation of Hunan Province,China
文摘Combining mathematical morphology (MM),nonparametric and nonlinear model,a novel approach for predicting slope displacement was developed to improve the prediction accuracy.A parallel-composed morphological filter with multiple structure elements was designed to process measured displacement time series with adaptive multi-scale decoupling.Whereafter,functional-coefficient auto regressive (FAR) models were established for the random subsequences.Meanwhile,the trend subsequence was processed by least squares support vector machine (LSSVM) algorithm.Finally,extrapolation results obtained were superposed to get the ultimate prediction result.Case study and comparative analysis demonstrate that the presented method can optimize training samples and show a good nonlinear predicting performance with low risk of choosing wrong algorithms.Mean absolute percentage error (MAPE) and root mean square error (RMSE) of the MM-FAR&LSSVM predicting results are as low as 1.670% and 0.172 mm,respectively,which means that the prediction accuracy are improved significantly.