The performance of an OFDM/OQAM system under phase noise is analyzed. The analysis helps to direct the design of low cost tuners through specifying the required phase noise characteristics. Discrete time formulation o...The performance of an OFDM/OQAM system under phase noise is analyzed. The analysis helps to direct the design of low cost tuners through specifying the required phase noise characteristics. Discrete time formulation of OFDM/OQAM is first derived with the square root raised cosine (SRRC) filter as the pulse-shaping filter. Then the effect of multiplicative phase noise is equivalently represented as additive white Gaussian noise (AWGN), the variance of which is given analytically. We can observe that the same result as OFDM/QAM system is derived. Lastly, all the analytical results are verified by the bit error rate (BER) degradation through Monte Carlo simulation.展开更多
To study the performance of various error-control coding schemes,exact expressions and upper bounds on the pairwise codeword error probability(PEP)for several modulation schemes(OOK,SC-BPSK,BPPM)used in atmospheric op...To study the performance of various error-control coding schemes,exact expressions and upper bounds on the pairwise codeword error probability(PEP)for several modulation schemes(OOK,SC-BPSK,BPPM)used in atmospheric optical communication systems are derived.To simplify the computation,this research was under the assumption of weak turbulence.Moreover,by simulation of expressions,the performances of PEP in different modulation schemes are compared and the best one of them is given.展开更多
This paper explores the potential to use accurate but outdated channel estimates for adaptive modulation. The work is novel in that the research is conditioned on block by block adaptation. First,we define a new quant...This paper explores the potential to use accurate but outdated channel estimates for adaptive modulation. The work is novel in that the research is conditioned on block by block adaptation. First,we define a new quantity,the Tolerable Average Use Delay (TAUD),which can indicate the ability of an adaptation scheme to tolerate the delay of channel estimation results. We find that for the variable-power schemes,TAUD is a constant and dependent on the target Bit Error Rate (BER),average power and Doppler frequency; while for the constant-power schemes,it depends on the ad-aptation block length as well. At last,we investigate the relation between the delay tolerating per-formance and the spectral efficiency and give the system design criterion. The delay tolerating per-formance is improved at the price of lower data rate.展开更多
A new decoding scheme for product accumulate (PA) code over a space optical Poisson/ pulse-position modulation (PPM) channel is investigated. In this scheme, the PPM and the accumulator of the PA code are taken as a s...A new decoding scheme for product accumulate (PA) code over a space optical Poisson/ pulse-position modulation (PPM) channel is investigated. In this scheme, the PPM and the accumulator of the PA code are taken as a single inner code, decoded with an iterative demodulating-decoding technique based on Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, rather than belief propagation (BP) algorithm in the original scheme. Simulation results show that this scheme provides much better bit error rate (BER) performance. At a BER of 10-5, the new scheme has a gain of 1.8 dB more than the original one. In addition, extrinsic information transfer (EXIT) charts are employed to analyze and compare the performance. The results indicate that the new scheme has not only better BER performance, but also lower error floor.展开更多
文摘The performance of an OFDM/OQAM system under phase noise is analyzed. The analysis helps to direct the design of low cost tuners through specifying the required phase noise characteristics. Discrete time formulation of OFDM/OQAM is first derived with the square root raised cosine (SRRC) filter as the pulse-shaping filter. Then the effect of multiplicative phase noise is equivalently represented as additive white Gaussian noise (AWGN), the variance of which is given analytically. We can observe that the same result as OFDM/QAM system is derived. Lastly, all the analytical results are verified by the bit error rate (BER) degradation through Monte Carlo simulation.
文摘To study the performance of various error-control coding schemes,exact expressions and upper bounds on the pairwise codeword error probability(PEP)for several modulation schemes(OOK,SC-BPSK,BPPM)used in atmospheric optical communication systems are derived.To simplify the computation,this research was under the assumption of weak turbulence.Moreover,by simulation of expressions,the performances of PEP in different modulation schemes are compared and the best one of them is given.
基金Supported by the National Natural Science Foundation of China (No.60496311).
文摘This paper explores the potential to use accurate but outdated channel estimates for adaptive modulation. The work is novel in that the research is conditioned on block by block adaptation. First,we define a new quantity,the Tolerable Average Use Delay (TAUD),which can indicate the ability of an adaptation scheme to tolerate the delay of channel estimation results. We find that for the variable-power schemes,TAUD is a constant and dependent on the target Bit Error Rate (BER),average power and Doppler frequency; while for the constant-power schemes,it depends on the ad-aptation block length as well. At last,we investigate the relation between the delay tolerating per-formance and the spectral efficiency and give the system design criterion. The delay tolerating per-formance is improved at the price of lower data rate.
基金supported by the National Natural Science Foundation of China (No.10477014) Jointing the Foundation of Aeronautical Science and Technology
文摘A new decoding scheme for product accumulate (PA) code over a space optical Poisson/ pulse-position modulation (PPM) channel is investigated. In this scheme, the PPM and the accumulator of the PA code are taken as a single inner code, decoded with an iterative demodulating-decoding technique based on Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, rather than belief propagation (BP) algorithm in the original scheme. Simulation results show that this scheme provides much better bit error rate (BER) performance. At a BER of 10-5, the new scheme has a gain of 1.8 dB more than the original one. In addition, extrinsic information transfer (EXIT) charts are employed to analyze and compare the performance. The results indicate that the new scheme has not only better BER performance, but also lower error floor.