Aluminum doped hydroxyapatite (HA:AI3 +) nanopowders were successfully prepared via a simple and efficient one-pot mechanochemical route. The effects of dopant loading on phase compositions and structural features...Aluminum doped hydroxyapatite (HA:AI3 +) nanopowders were successfully prepared via a simple and efficient one-pot mechanochemical route. The effects of dopant loading on phase compositions and structural features were assessed by Rietveld analysis. The XRD-Rietveld refinement revealed the stabilization of HA in hexagonal structure for all the samples. The sharpness and intensity of the apatite-derived XRD peaks decreased as the dopant content increased to 10% due to the increase in lattice imperfections and mechanically induced amorphization. The incorpo- ration of A13 + into the HA lattice decreased the unit cell parameters. From the FfiR measurements, the representing bands of apatite were identified in all cases. The mechanosynthesized nanopowders consisted of nanospheroids with an average size of 44 - 20 nm and therefore are promising for bone tissue regeneration.展开更多
We report the discovery and characterization of a novel 112-type iron pnictide EuFeAs2, with La-doping induced superconductivity in a series of Eu1- xLaxFeAs2. The polycrystalline samples were synthesized through soli...We report the discovery and characterization of a novel 112-type iron pnictide EuFeAs2, with La-doping induced superconductivity in a series of Eu1- xLaxFeAs2. The polycrystalline samples were synthesized through solid state reaction method only within a very narrow temperature window around 1073 K. Small single crystals were also grown from a flux method with the size about 100μm. The crystal structure was identified by single crystal X-ray diffraction analysis as a monoclinic structure with space group of P2 1/m. From resistivity and magnetic susceptibility measurements, we found that the parent compound EuFeAs2 shows distinct anomalies probably due to the Fe2+ related antiferromagnetic/structural phase transition near 110K and the Eu2+ related antiferromagnetic phase transition near 40K. La-doping suppressed both phase transitions to lower temperatures and induced superconducting transitions with a Tc - 11 K for Eu0.85La0.15FeAs2.展开更多
基金Supported by the National Science Foundation(PREM center for interfaces,DMR-1205670)the Robert A.Welch Foundation(Al-0045)
文摘Aluminum doped hydroxyapatite (HA:AI3 +) nanopowders were successfully prepared via a simple and efficient one-pot mechanochemical route. The effects of dopant loading on phase compositions and structural features were assessed by Rietveld analysis. The XRD-Rietveld refinement revealed the stabilization of HA in hexagonal structure for all the samples. The sharpness and intensity of the apatite-derived XRD peaks decreased as the dopant content increased to 10% due to the increase in lattice imperfections and mechanically induced amorphization. The incorpo- ration of A13 + into the HA lattice decreased the unit cell parameters. From the FfiR measurements, the representing bands of apatite were identified in all cases. The mechanosynthesized nanopowders consisted of nanospheroids with an average size of 44 - 20 nm and therefore are promising for bone tissue regeneration.
基金the financial supports from the National Natural Science Foundation of China (11474339)the National Basic Research Program of China (973 Program, 2016YFA0300301, 2010CB923000 and 2011CBA00100)the Youth Innovation Promotion Association of the Chinese Academy of Sciences
文摘We report the discovery and characterization of a novel 112-type iron pnictide EuFeAs2, with La-doping induced superconductivity in a series of Eu1- xLaxFeAs2. The polycrystalline samples were synthesized through solid state reaction method only within a very narrow temperature window around 1073 K. Small single crystals were also grown from a flux method with the size about 100μm. The crystal structure was identified by single crystal X-ray diffraction analysis as a monoclinic structure with space group of P2 1/m. From resistivity and magnetic susceptibility measurements, we found that the parent compound EuFeAs2 shows distinct anomalies probably due to the Fe2+ related antiferromagnetic/structural phase transition near 110K and the Eu2+ related antiferromagnetic phase transition near 40K. La-doping suppressed both phase transitions to lower temperatures and induced superconducting transitions with a Tc - 11 K for Eu0.85La0.15FeAs2.