Objective: To study synergistic effect with Ascorbic acid(AA) on arsenic trioxide inducing human Hepatocarcinoma cell apoptosis, and provide theoretical basis for promoting human Hepatocarcinoma cell apoptosis induced...Objective: To study synergistic effect with Ascorbic acid(AA) on arsenic trioxide inducing human Hepatocarcinoma cell apoptosis, and provide theoretical basis for promoting human Hepatocarcinoma cell apoptosis induced by arsenic trioxide(AT). Methods: Human Hepatocarcinoma cell line BEL-7402 being cultured in vitro, the effect of AT and (or) AA on its growth inhibition and its two intracellular signal molecules was evaluated separately using MTT and Western blot. Results: AT at a few μmol/L concentration could suppress abnormal proliferation of human hepatocarcinoma cells, and initiate their apoptosis by activation of caspase-3, and activate extracellular-signal regulated kinases (ERKs), which were dependent on the dosage of AT conspicuously. The effect of AA on BEL-7402 was not significant; However, AA could effectively enhance AT-induced hepatocarcinoma cell apoptosis and lesion severity through activation of caspase-3 but not ERKs. Conclusion: Caspase-3 and ERKs proteins could involve in arsenic-induced hepatocarcinoma cell apoptosis and differentiation respectively as intracellular signaling molecules; The effect between AT and AA on hepatocarcinoma is synergistic, which further inhibits cell growth and induces apoptosis in human hepatocarcinoma cells through activation of caspase-3 but not ERKs.展开更多
AIM: To characterize the anticancer function of cytokine-induced killer cells (CIK) and develop an adoptive immunotherapy for the patients with primary hepatocellular carcinoma (HCC), we evaluated the proliferation ra...AIM: To characterize the anticancer function of cytokine-induced killer cells (CIK) and develop an adoptive immunotherapy for the patients with primary hepatocellular carcinoma (HCC), we evaluated the proliferation rate, phenotype and the antitumor activity of human CIK cells from healthy donors and HCC patients in vitro and in vivo. METHODS: Peripheral blood mononuclear cells (PBMC) from healthy donors and patients with primary HCC were incubated in vitro and induced into CIK cells in the presence of various cytokines such as interferon-gamma (IFN-gamma), interleukin-1 (IL-1), IL-2 and monoclonal antibody (mAb) against CD3. The phenotype and characterization of CIK cells were identified by flow cytometric analysis. The cytotoxicity of CIK cells was determined by (51)Cr release assay. RESULTS: The CIK cells were shown to be a heterogeneous population with different cellular phenotypes. The percentage of CD3+/CD56+ positive cells, the dominant effector cells, in total CIK cells from healthy donors and HCC patients, significantly increased from 0.1-0.13% at day 0 to 19.0-20.5% at day 21 incubation, which suggested that the CD3+ CD56+ positive cells proliferated faster than other cell populations of CIK cells in the protocol used in this study. After 28 day in vitro incubation, the CIK cells from patients with HCC and healthy donors increased by more than 300-fold and 500-fold in proliferation cell number, respectively. CIK cells originated from HCC patients possessed a higher in vitro antitumor cytotoxic activity on autologous HCC cells than the autologous lymphokine-activated killer (LAK) cells and PBMC cells. In in vivo animal experiment, CIK cells had stronger effects on the inhibition of tumor growth in Balb/c nude mice bearing BEL-7402-producing tumor than LAK cells (mean inhibitory rate, 84.7% vs 52.8%, P【0.05) or PBMC (mean inhibitory rate, 84.7% vs 37.1%, P【0.01). CONCLUSION: Autologous CIK cells are of highly efficient cytotoxic effector cells against primary hepatocellular carcinoma cells and might serve as an alternative adoptive therapeutic strategy for HCC patients.展开更多
AIM: To investigate the effects of Chrysanthemum indicum extract (CIE) on inhibition of proliferation and on apoptosis, and the underlying mechanisms, in a human hepatocellular carcinoma (HCC) MHCC97H cell line. ...AIM: To investigate the effects of Chrysanthemum indicum extract (CIE) on inhibition of proliferation and on apoptosis, and the underlying mechanisms, in a human hepatocellular carcinoma (HCC) MHCC97H cell line. METHODS: Viable rat hepatocytes and human endothelial ECV304 cells were examined by trypan blue exclusion and MTT assay, respectively, as normal controls. The proliferation of MHCC97H cells was determined by MTT assay. The cellular morphology of MHCC97H cells was observed by phase contrast microscopy. Flow cytometry was performed to analyze cell apoptosis with annexin V/propidium iodide (PI), mitochondrial membrane potential with rhodamine 123 and cell cycle with PI in MHCC97H cells. Apoptotic proteins such as cytochrome C, caspase-9, caspase-3 and cell cycle proteins, including P21 and CDK4, were measured by Western blotting. RESULTS: CIE inhibited proliferation of MHCC97H cells in a timeand dose-dependent manner without cytotoxicity in rat hepatocytes and human endothelial ceils. CIE induced apoptosis of MHCC97H cells in a concentration-dependent manner, as determined by flow cytometry. The apoptosis was accompanied by a decrease in mitochondrial membrane potential, release of cytochrome C and activation of caspase-9 and caspase-3. CIE arrested the cell cycle in the S phase by increasing P21 and decreasing CDK4 protein expression. CONCLUSION: CIE exerted a significant apoptotic effect through a mitochondrial pathway and arrested the cell cycle by regulation of cell cycle-related proteins in MHCC97H cells without an effect on normal cells. The cancer-specific selectivity shown in this study suggests that the plant extract could be a promising novel treatment for human cancer.展开更多
AIM: To investigate the role of octreotide on cellular proliferation and apoptosis of human hepatoma (HepG2) cells. METHODS: We studied cellular proliferation, apoptosis and the possible internal caspase-mediated apop...AIM: To investigate the role of octreotide on cellular proliferation and apoptosis of human hepatoma (HepG2) cells. METHODS: We studied cellular proliferation, apoptosis and the possible internal caspase-mediated apoptosis pathway involved, after treatment of HepG2 carcinoma cells with octreotide in comparison with the apoptosis caused by tumor necrosis factor-α (TNF-α). Activities of caspase-3, caspase-9, caspase-8 and caspase-2 were studied, while apoptosis was investigated through detection of DNA fragmentation and through identification of apoptotic cells with the annexin-V/propidium iodide flow cytometric method. RESULTS: After an initial increase in HepG2 cellular proliferation, a significant inhibition was observed with 10-8 mol/L octreotide, while TNF-α dose-dependently decreased proliferation. Early and late apoptosis was significantly increased with both substances. Octreotide significantly increased caspase-3, caspase-8 and caspase-2 activity. TNF-α signifi cantly increased only caspase-2. Cellular proliferation was decreased after treatment with octreotide or TNF-α alone but, in contrast to TNF-α, octreotide decreased proliferation only at concentrations of 10-8 mol/L, while lower concentrations increased proliferation. CONCLUSION: Our findings are suggestive of caspasemediated signaling pathways of octreotide antitumor activity in HepG2 cells, and indicate that measurements of serum octreotide levels may be important, at least in clinical trials, to verify optimal therapeutic drug concentrations.展开更多
AIM: To investigate the molecular mechanisms by which tea pigments exert preventive effects on liver carcinogenesis. METHODS: HepG2 cells were seeded at a density of 5×10^5/well in six-well culture dishes and i...AIM: To investigate the molecular mechanisms by which tea pigments exert preventive effects on liver carcinogenesis. METHODS: HepG2 cells were seeded at a density of 5×10^5/well in six-well culture dishes and incubated overnight. The cells then were treated with various concentrations of tea pigments over 3 d, harvested by trypsinization, and counted using a hemocytometer. Flow cytometric analysis was performed by a flow cytometer after propidium iodide labeling. Bd-2 and p21^WAF1 proteins were determined by Western blotting. In addition, DNA laddering assay was performed on treated and untreated cultured HepG2 cells. RESULTS: Tea pigments inhibited the growth of HepG2 cells in a dose-dependent manner. Flow-cytometric analysis showed that tea pigments arrested cell cycle progression at G1 phase. DNA laddering was used to investigate apoptotic cell death, and the result showed that 100 mg/L of tea pigments caused typical DNA laddering. Our study also showed that tea pigments induced upregulation of p21^WAF1 protein and downregulation of Bcl-2 protein. CONCLUSION: Tea pigments induce cell-cycle arrest and apoptosis. Tea pigments may be used as an ideal chemopreventive agent.展开更多
AIM: To investigate the survivin gene expression in human hepatocellular carcinoma cell line SMMC-7721 and the effects of survivin gene RNA interference (RNAi) on cell apoptosis and biological behaviors of SMMC-7721 c...AIM: To investigate the survivin gene expression in human hepatocellular carcinoma cell line SMMC-7721 and the effects of survivin gene RNA interference (RNAi) on cell apoptosis and biological behaviors of SMMC-7721 cells. METHODS: Eukaryotic expression vector of survivin gene RNAi and recombinant plasmid pSuppressorNeo-survivin (pSuNeo-SW), were constructed by ligating into the vector, pSupperssorNeo (pSuNeo) digested with restriction enzymes Xba I and Sail and the designed double-chain RNAi primers. A cell model of SMMC-7721 after treatment with RNAi was prepared by transfecting SMMC-7721 cells with the lipofectin transfection method. Strept-avidin-biotin-complex (SABC) immunohistochemical staining and RT-PCR were used to detect survivin gene expressions in SMMC-7721 cells. Flow cytometry was used for the cell cycle analysis. Transmission electron microscopy was performed to determine whether RNAi induced cell apoptosis, and the method of measuring the cell growth curve was utilized to study the growth of SMMC-7721 cells before and after treatment with RNAi. RESULTS: The eukaryotic expression vector of survivin gene RNAi and pSuNeo-SW, were constructed successfully. The expression level of survivin gene in SMMC-7721 cells was observed. After the treatment of RNAi, the expression of survivin gene in SMMC-7721 cells was almost absent, apoptosis index was increased by 15.6%, and the number of cells was decreased in G2/M phase and the cell growth was inhibited. CONCLUSION: RNAi can exert a knockdown of survivin gene expression in SMMC-7721 cells, and induce apoptosis and inhibit the growth of carcinoma cells.展开更多
It has been shown that oncoprotein p28GANK, which is consistently overexpressed in human hepatocellular carcinoma (HCC), plays a critical role in tumorigenesis of HCC. However, the underlying mechanism remains uncle...It has been shown that oncoprotein p28GANK, which is consistently overexpressed in human hepatocellular carcinoma (HCC), plays a critical role in tumorigenesis of HCC. However, the underlying mechanism remains unclear. Here, we demonstrated that p28GANK inhibits apoptosis in HCC cells induced by the endoplasmic reticulum (ER) stress. During ER stress, p28GANK enhances the unfolded protein response, promotes ER recovery from translational repression, and thereby facilitates cell's ability to cope with the stress conditions. Furthermore, p28GANK upregulates glucose-regulated protein 78 (GRP78), a key ER chaperone protein, which subsequently enhances the ER folding capacity and promotes recovery from ER stress. We also demonstrated that p28GANK increases p38 mitogen-activated protein kinase and Akt phosphorylation, and inhibits nuclear factor kappa B (NF-κB) activation under ER stress, which in turn contributes to GRP78 upregulation. Taken together, our results indicate that p28GANK inhibits ER stress-induced apoptosis in HCC cells, at least in part, by enhancing the adaptive response and GRP78 expression. We propose that p28GANK has potential implications for HCC progression under the ER stress conditions.展开更多
Objective:The aim of this study was to analyze the expression features of hypoxia inducible factor-1α (HIF-1α) in hepatocellular carcinoma (HCC) and effects of HIF-1α silencing on HepG2 cells.Methods:HIF-1α expres...Objective:The aim of this study was to analyze the expression features of hypoxia inducible factor-1α (HIF-1α) in hepatocellular carcinoma (HCC) and effects of HIF-1α silencing on HepG2 cells.Methods:HIF-1α expression was analyzed in the self-control HCC specimens by immunohistochemistry.After HepG2 cells with miRNA transfection,the expression of HIF-1α was determined at mRNA or protein level by real-time polymerase chain reaction (PCR) or Western blotting.Vascular endothelial growth factor (VEGF) and angiopoietin-2 (ANG-2) were determined by ELISA.Alterations of cell cycles and apoptosis of HepG2 cells were measured using a flow cytometer.Results:Positive HIF-1α was brown and granule-like in the cytoplasm or nucleus.Significant difference was found between HCC (80%) and its surrounding tissues (100%,χ2=22.35,P < 0.001) and HIF-1α expression related to tumor size.At 72 h after miRNA transfection,the expression of HIF-1α in HepG2 cells was down-regulated by 87% at mRNA or 65% at protein level,with VEGF and ANG-2 decreased to 54% and 36%,respectively.After RNA interference combined with anti-cancer drug,the apoptotic rate of HepG2 cells was increasing from 22.46% ± 0.61% to 36.99% ± 0.88%,with up-regulation of G1 phase (65.68% ± 0.91%) and down-regulation of S phase (19.47 ± 1.34 %).Conclusion:Abnormal expression of HIF-1α is associated with development of HCC,and HIF-1α gene silencing can effectively inhibit HepG2 cell proliferation.展开更多
文摘Objective: To study synergistic effect with Ascorbic acid(AA) on arsenic trioxide inducing human Hepatocarcinoma cell apoptosis, and provide theoretical basis for promoting human Hepatocarcinoma cell apoptosis induced by arsenic trioxide(AT). Methods: Human Hepatocarcinoma cell line BEL-7402 being cultured in vitro, the effect of AT and (or) AA on its growth inhibition and its two intracellular signal molecules was evaluated separately using MTT and Western blot. Results: AT at a few μmol/L concentration could suppress abnormal proliferation of human hepatocarcinoma cells, and initiate their apoptosis by activation of caspase-3, and activate extracellular-signal regulated kinases (ERKs), which were dependent on the dosage of AT conspicuously. The effect of AA on BEL-7402 was not significant; However, AA could effectively enhance AT-induced hepatocarcinoma cell apoptosis and lesion severity through activation of caspase-3 but not ERKs. Conclusion: Caspase-3 and ERKs proteins could involve in arsenic-induced hepatocarcinoma cell apoptosis and differentiation respectively as intracellular signaling molecules; The effect between AT and AA on hepatocarcinoma is synergistic, which further inhibits cell growth and induces apoptosis in human hepatocarcinoma cells through activation of caspase-3 but not ERKs.
基金Science and Technology Development Foundation of Beijing Institute of Infectious Diseases,No.01 Z094
文摘AIM: To characterize the anticancer function of cytokine-induced killer cells (CIK) and develop an adoptive immunotherapy for the patients with primary hepatocellular carcinoma (HCC), we evaluated the proliferation rate, phenotype and the antitumor activity of human CIK cells from healthy donors and HCC patients in vitro and in vivo. METHODS: Peripheral blood mononuclear cells (PBMC) from healthy donors and patients with primary HCC were incubated in vitro and induced into CIK cells in the presence of various cytokines such as interferon-gamma (IFN-gamma), interleukin-1 (IL-1), IL-2 and monoclonal antibody (mAb) against CD3. The phenotype and characterization of CIK cells were identified by flow cytometric analysis. The cytotoxicity of CIK cells was determined by (51)Cr release assay. RESULTS: The CIK cells were shown to be a heterogeneous population with different cellular phenotypes. The percentage of CD3+/CD56+ positive cells, the dominant effector cells, in total CIK cells from healthy donors and HCC patients, significantly increased from 0.1-0.13% at day 0 to 19.0-20.5% at day 21 incubation, which suggested that the CD3+ CD56+ positive cells proliferated faster than other cell populations of CIK cells in the protocol used in this study. After 28 day in vitro incubation, the CIK cells from patients with HCC and healthy donors increased by more than 300-fold and 500-fold in proliferation cell number, respectively. CIK cells originated from HCC patients possessed a higher in vitro antitumor cytotoxic activity on autologous HCC cells than the autologous lymphokine-activated killer (LAK) cells and PBMC cells. In in vivo animal experiment, CIK cells had stronger effects on the inhibition of tumor growth in Balb/c nude mice bearing BEL-7402-producing tumor than LAK cells (mean inhibitory rate, 84.7% vs 52.8%, P【0.05) or PBMC (mean inhibitory rate, 84.7% vs 37.1%, P【0.01). CONCLUSION: Autologous CIK cells are of highly efficient cytotoxic effector cells against primary hepatocellular carcinoma cells and might serve as an alternative adoptive therapeutic strategy for HCC patients.
基金Supported by Grants From the National Natural Science Foundation of China,No.30672766Science and Technology Developing Foundation of Shaanxi Province,China,No.2006K16-G4(1)
文摘AIM: To investigate the effects of Chrysanthemum indicum extract (CIE) on inhibition of proliferation and on apoptosis, and the underlying mechanisms, in a human hepatocellular carcinoma (HCC) MHCC97H cell line. METHODS: Viable rat hepatocytes and human endothelial ECV304 cells were examined by trypan blue exclusion and MTT assay, respectively, as normal controls. The proliferation of MHCC97H cells was determined by MTT assay. The cellular morphology of MHCC97H cells was observed by phase contrast microscopy. Flow cytometry was performed to analyze cell apoptosis with annexin V/propidium iodide (PI), mitochondrial membrane potential with rhodamine 123 and cell cycle with PI in MHCC97H cells. Apoptotic proteins such as cytochrome C, caspase-9, caspase-3 and cell cycle proteins, including P21 and CDK4, were measured by Western blotting. RESULTS: CIE inhibited proliferation of MHCC97H cells in a timeand dose-dependent manner without cytotoxicity in rat hepatocytes and human endothelial ceils. CIE induced apoptosis of MHCC97H cells in a concentration-dependent manner, as determined by flow cytometry. The apoptosis was accompanied by a decrease in mitochondrial membrane potential, release of cytochrome C and activation of caspase-9 and caspase-3. CIE arrested the cell cycle in the S phase by increasing P21 and decreasing CDK4 protein expression. CONCLUSION: CIE exerted a significant apoptotic effect through a mitochondrial pathway and arrested the cell cycle by regulation of cell cycle-related proteins in MHCC97H cells without an effect on normal cells. The cancer-specific selectivity shown in this study suggests that the plant extract could be a promising novel treatment for human cancer.
基金Supported by Research funds of the Liver Research Laboratory,School of Medicine,University of Crete,Greece
文摘AIM: To investigate the role of octreotide on cellular proliferation and apoptosis of human hepatoma (HepG2) cells. METHODS: We studied cellular proliferation, apoptosis and the possible internal caspase-mediated apoptosis pathway involved, after treatment of HepG2 carcinoma cells with octreotide in comparison with the apoptosis caused by tumor necrosis factor-α (TNF-α). Activities of caspase-3, caspase-9, caspase-8 and caspase-2 were studied, while apoptosis was investigated through detection of DNA fragmentation and through identification of apoptotic cells with the annexin-V/propidium iodide flow cytometric method. RESULTS: After an initial increase in HepG2 cellular proliferation, a significant inhibition was observed with 10-8 mol/L octreotide, while TNF-α dose-dependently decreased proliferation. Early and late apoptosis was significantly increased with both substances. Octreotide significantly increased caspase-3, caspase-8 and caspase-2 activity. TNF-α signifi cantly increased only caspase-2. Cellular proliferation was decreased after treatment with octreotide or TNF-α alone but, in contrast to TNF-α, octreotide decreased proliferation only at concentrations of 10-8 mol/L, while lower concentrations increased proliferation. CONCLUSION: Our findings are suggestive of caspasemediated signaling pathways of octreotide antitumor activity in HepG2 cells, and indicate that measurements of serum octreotide levels may be important, at least in clinical trials, to verify optimal therapeutic drug concentrations.
基金Supported by the National Natural Science Foundation of China, No. 39970639
文摘AIM: To investigate the molecular mechanisms by which tea pigments exert preventive effects on liver carcinogenesis. METHODS: HepG2 cells were seeded at a density of 5×10^5/well in six-well culture dishes and incubated overnight. The cells then were treated with various concentrations of tea pigments over 3 d, harvested by trypsinization, and counted using a hemocytometer. Flow cytometric analysis was performed by a flow cytometer after propidium iodide labeling. Bd-2 and p21^WAF1 proteins were determined by Western blotting. In addition, DNA laddering assay was performed on treated and untreated cultured HepG2 cells. RESULTS: Tea pigments inhibited the growth of HepG2 cells in a dose-dependent manner. Flow-cytometric analysis showed that tea pigments arrested cell cycle progression at G1 phase. DNA laddering was used to investigate apoptotic cell death, and the result showed that 100 mg/L of tea pigments caused typical DNA laddering. Our study also showed that tea pigments induced upregulation of p21^WAF1 protein and downregulation of Bcl-2 protein. CONCLUSION: Tea pigments induce cell-cycle arrest and apoptosis. Tea pigments may be used as an ideal chemopreventive agent.
文摘AIM: To investigate the survivin gene expression in human hepatocellular carcinoma cell line SMMC-7721 and the effects of survivin gene RNA interference (RNAi) on cell apoptosis and biological behaviors of SMMC-7721 cells. METHODS: Eukaryotic expression vector of survivin gene RNAi and recombinant plasmid pSuppressorNeo-survivin (pSuNeo-SW), were constructed by ligating into the vector, pSupperssorNeo (pSuNeo) digested with restriction enzymes Xba I and Sail and the designed double-chain RNAi primers. A cell model of SMMC-7721 after treatment with RNAi was prepared by transfecting SMMC-7721 cells with the lipofectin transfection method. Strept-avidin-biotin-complex (SABC) immunohistochemical staining and RT-PCR were used to detect survivin gene expressions in SMMC-7721 cells. Flow cytometry was used for the cell cycle analysis. Transmission electron microscopy was performed to determine whether RNAi induced cell apoptosis, and the method of measuring the cell growth curve was utilized to study the growth of SMMC-7721 cells before and after treatment with RNAi. RESULTS: The eukaryotic expression vector of survivin gene RNAi and pSuNeo-SW, were constructed successfully. The expression level of survivin gene in SMMC-7721 cells was observed. After the treatment of RNAi, the expression of survivin gene in SMMC-7721 cells was almost absent, apoptosis index was increased by 15.6%, and the number of cells was decreased in G2/M phase and the cell growth was inhibited. CONCLUSION: RNAi can exert a knockdown of survivin gene expression in SMMC-7721 cells, and induce apoptosis and inhibit the growth of carcinoma cells.
文摘It has been shown that oncoprotein p28GANK, which is consistently overexpressed in human hepatocellular carcinoma (HCC), plays a critical role in tumorigenesis of HCC. However, the underlying mechanism remains unclear. Here, we demonstrated that p28GANK inhibits apoptosis in HCC cells induced by the endoplasmic reticulum (ER) stress. During ER stress, p28GANK enhances the unfolded protein response, promotes ER recovery from translational repression, and thereby facilitates cell's ability to cope with the stress conditions. Furthermore, p28GANK upregulates glucose-regulated protein 78 (GRP78), a key ER chaperone protein, which subsequently enhances the ER folding capacity and promotes recovery from ER stress. We also demonstrated that p28GANK increases p38 mitogen-activated protein kinase and Akt phosphorylation, and inhibits nuclear factor kappa B (NF-κB) activation under ER stress, which in turn contributes to GRP78 upregulation. Taken together, our results indicate that p28GANK inhibits ER stress-induced apoptosis in HCC cells, at least in part, by enhancing the adaptive response and GRP78 expression. We propose that p28GANK has potential implications for HCC progression under the ER stress conditions.
基金Supported by grants from Jiang su Health Key Project(No.K201102)Nantong City Social Development Project (No. S2009027)
文摘Objective:The aim of this study was to analyze the expression features of hypoxia inducible factor-1α (HIF-1α) in hepatocellular carcinoma (HCC) and effects of HIF-1α silencing on HepG2 cells.Methods:HIF-1α expression was analyzed in the self-control HCC specimens by immunohistochemistry.After HepG2 cells with miRNA transfection,the expression of HIF-1α was determined at mRNA or protein level by real-time polymerase chain reaction (PCR) or Western blotting.Vascular endothelial growth factor (VEGF) and angiopoietin-2 (ANG-2) were determined by ELISA.Alterations of cell cycles and apoptosis of HepG2 cells were measured using a flow cytometer.Results:Positive HIF-1α was brown and granule-like in the cytoplasm or nucleus.Significant difference was found between HCC (80%) and its surrounding tissues (100%,χ2=22.35,P < 0.001) and HIF-1α expression related to tumor size.At 72 h after miRNA transfection,the expression of HIF-1α in HepG2 cells was down-regulated by 87% at mRNA or 65% at protein level,with VEGF and ANG-2 decreased to 54% and 36%,respectively.After RNA interference combined with anti-cancer drug,the apoptotic rate of HepG2 cells was increasing from 22.46% ± 0.61% to 36.99% ± 0.88%,with up-regulation of G1 phase (65.68% ± 0.91%) and down-regulation of S phase (19.47 ± 1.34 %).Conclusion:Abnormal expression of HIF-1α is associated with development of HCC,and HIF-1α gene silencing can effectively inhibit HepG2 cell proliferation.