期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Attention Bi-LSTM模型构建蛋白质诱饵序列库
被引量:
2
1
作者
曾祥利
马洁
+1 位作者
朱云平
舒坤贤
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2020年第4期655-663,共9页
利用计算机技术在海量质谱数据中鉴定蛋白质序列是蛋白质组学研究最基本且重要的任务之一,诱饵序列库构建的好坏是蛋白质鉴定质量控制成功的关键之一。发展了基于注意力机制-双向长短期记忆神经网络(Attention Bi-LSTM)的诱饵序列构建方...
利用计算机技术在海量质谱数据中鉴定蛋白质序列是蛋白质组学研究最基本且重要的任务之一,诱饵序列库构建的好坏是蛋白质鉴定质量控制成功的关键之一。发展了基于注意力机制-双向长短期记忆神经网络(Attention Bi-LSTM)的诱饵序列构建方法,整体研究基于编码-解码框架,采用双向长短期记忆神经网络在解决传统循环神经网络梯度消失问题的同时,可以捕获前向后向更多依赖信息对处理序列数据更加有优势;引入注意力机制提高模型对目标序列库和诱饵序列库相关程度的关注度;并与目前常用的随机和反转算法进行比较。结果显示,基于Attention Bi-LSTM模型构建的诱饵序列库能满足理想诱饵序列库的各项特征要求;在不同大小实验数据集以及谱图、肽段、蛋白3个层面对比分析,显示构建的诱饵序列库与其他方法比具有更好的灵敏性。因此,Attention Bi-LSTM是一种很有潜力的诱饵序列库构建方法。
展开更多
关键词
蛋白质鉴定
诱饵序列库
长短期记忆神经网络
注意力机制
下载PDF
职称材料
题名
基于Attention Bi-LSTM模型构建蛋白质诱饵序列库
被引量:
2
1
作者
曾祥利
马洁
朱云平
舒坤贤
机构
重庆邮电大学计算机科学与技术学院大数据生物智能重庆市重点实验室
国家蛋白质科学中心(北京)蛋白质组研究中心蛋白质组学国家重点实验室
出处
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2020年第4期655-663,共9页
基金
国家自然科学基金(61501071,21475150)
国家高技术研究发展计划(2015AA020108,2015AA020101)。
文摘
利用计算机技术在海量质谱数据中鉴定蛋白质序列是蛋白质组学研究最基本且重要的任务之一,诱饵序列库构建的好坏是蛋白质鉴定质量控制成功的关键之一。发展了基于注意力机制-双向长短期记忆神经网络(Attention Bi-LSTM)的诱饵序列构建方法,整体研究基于编码-解码框架,采用双向长短期记忆神经网络在解决传统循环神经网络梯度消失问题的同时,可以捕获前向后向更多依赖信息对处理序列数据更加有优势;引入注意力机制提高模型对目标序列库和诱饵序列库相关程度的关注度;并与目前常用的随机和反转算法进行比较。结果显示,基于Attention Bi-LSTM模型构建的诱饵序列库能满足理想诱饵序列库的各项特征要求;在不同大小实验数据集以及谱图、肽段、蛋白3个层面对比分析,显示构建的诱饵序列库与其他方法比具有更好的灵敏性。因此,Attention Bi-LSTM是一种很有潜力的诱饵序列库构建方法。
关键词
蛋白质鉴定
诱饵序列库
长短期记忆神经网络
注意力机制
Keywords
protein identification
decoy sequence
long-term and short-term memory neural network
attention mechanism
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Attention Bi-LSTM模型构建蛋白质诱饵序列库
曾祥利
马洁
朱云平
舒坤贤
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2020
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部