A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The resu...A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region.展开更多
This study proposes a new explanation for the formation of precipitation anomaly patterns in the boreal summer during the E1 Nifio-Southem Oscillation (ENSO) developing and decaying phases. During the boreal sum- me...This study proposes a new explanation for the formation of precipitation anomaly patterns in the boreal summer during the E1 Nifio-Southem Oscillation (ENSO) developing and decaying phases. During the boreal sum- mer June-July-August (JJA) (0) of the E1 Nino (La Nina) developing phase, the upper level (300-100 hPa) positive potential temperature anomalies resemble a Ma- tsuno-Gill-type response to central Pacific heating (cool- ing), and the lower level (1000-850 hPa) potential tem- perature anomalies are consistent with local SST anoma- lies. During the boreal summer JJA(1) of the E1 Nifio (La Nifia) decaying phase, the upper level potential tempera- ture warms over the entire tropical zone and resembles a Matsuno-Gill-type response to Indian Ocean heating (cooling), and the lower level potential temperature anomalies follow local SST anomalies. The vertical heterogeneity of potential temperature anomalies influences the atmospheric stability, which in turn influences the precipitation anomaly pattern. The results of numerical experiments confirm our observations.展开更多
The fractional volumetric lattice Boltzmann method with much better stability was used to simulate two-chmensional cavity flows. Because the effective viscosity was reduced by the fraction factor, it is very effective...The fractional volumetric lattice Boltzmann method with much better stability was used to simulate two-chmensional cavity flows. Because the effective viscosity was reduced by the fraction factor, it is very effective for simulating high Reynolds number flows. Simulations were carried out on a uniform grids system. The stream lines and the velocity profiles obtained from the simulations agree well with the standard lattice Boltzmann method simulations. Comparisons of detailed flow patterns with other studies via location of vortex centers are also satisfactory.展开更多
As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion...As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the honeycomb lattice (Z = 3). The Liapunov exponent A is calculated for discussing the stability of the magnetization and it is used to determine the phase boundary. In the field amplitude ho / ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn. In contrast to previous analytical results that predicted a tricritical point separating a dynamic phase boundary line of continuous and discontinuous transitions, we find that the transition is always continuous. There is inconsistency between our results and previous analytical results, because they do not introduce sufficiently strong fluctuations.展开更多
In this work we show that homogeneous Neumann boundary conditions inhibit the Coleman-Weinberg mechanism for spontaneous symmetry breaking in the scalar electrodynamics if the length of the finite region is small enou...In this work we show that homogeneous Neumann boundary conditions inhibit the Coleman-Weinberg mechanism for spontaneous symmetry breaking in the scalar electrodynamics if the length of the finite region is small enough (a = e2Mφ-1, where M, is the mass of the scalar field generated by the Coleman-Weinberg mechanism).展开更多
Numerical investigations of the Darmstadt transonic single stage compressor (DTC), in the Rotor1-Stator1 configuration, aimed at advancing the understanding of the effect of different rotor tip gaps and transition mod...Numerical investigations of the Darmstadt transonic single stage compressor (DTC), in the Rotor1-Stator1 configuration, aimed at advancing the understanding of the effect of different rotor tip gaps and transition modelling on the blade surfaces are presented. Steady three dimensional Reynolds Averaged Navier Stokes (RANS) simulations were performed to obtain the flow fields for the different configurations at different operating conditions using the RANS-Solver TRACE. The stage geometry and the multi-block structured grid were generated by G3DMESH and a grid sensitivity analysis was conducted. For the clearance gap region, a fully gridded special H-grid was chosen. Comparisons were made between the flow characteristic at design speed, representative for a transonic flow regime, and at 65% speed, representative for a subsonic flow regime. The computations were used to analyse the flow phenomena through the tip clearance region for the different configurations and their impact on the performance of the compressor stage.展开更多
It is proved constructively that there exists a thin subset S of primes, satisfying for some absolute constant c>0, such that every sufficiently large odd integer N can beLet r be prime, and hi positive integers with...It is proved constructively that there exists a thin subset S of primes, satisfying for some absolute constant c>0, such that every sufficiently large odd integer N can beLet r be prime, and hi positive integers with (bj, r) = 1,j = 1, 2, 3. It is also proved that, for almost all prime moduli r< log- N, every sufficiently large odd integer N = b1 + b2 +ba(modr) can be represented as where c > 0 is an absolute constant.展开更多
In this paper we give a new method to investigate Noether symmetries and conservation laws of nonconservative and nonholonomic mechanical systems on time scales , which unifies the Noether's theories of the two ca...In this paper we give a new method to investigate Noether symmetries and conservation laws of nonconservative and nonholonomic mechanical systems on time scales , which unifies the Noether's theories of the two cases for the continuous and the discrete nonconservative and nonholonomic systems. Firstly, the exchanging relationships between the isochronous variation and the delta derivatives as well as the relationships between the isochronous variation and the total variation on time scales are obtained. Secondly, using the exchanging relationships, the Hamilton's principle is presented for nonconservative systems with delta derivatives and then the Lagrange equations of the systems are obtained. Thirdly, based on the quasi-invariance of Hamiltonian action of the systems under the infinitesimal transformations with respect to the time and generalized coordinates, the Noether's theorem and the conservation laws for nonconservative systems on time scales are given. Fourthly, the d'Alembert-Lagrange principle with delta derivatives is presented, and the Lagrange equations of nonholonomic systems with delta derivatives are obtained. In addition, the Noether's theorems and the conservation laws for nonholonomic systems on time scales are also obtained. Lastly, we present a new version of Noether's theorems for discrete systems. Several examples are given to illustrate the application of our results.展开更多
Direct numerical simulation(DNS) was performed for the first time to study the flow over a backward-facing step at a high Reynolds number on a coarse grid.The flow over backward-facing step is the typical turbulent fl...Direct numerical simulation(DNS) was performed for the first time to study the flow over a backward-facing step at a high Reynolds number on a coarse grid.The flow over backward-facing step is the typical turbulent flow controlled by large eddy,in which the effect of small eddy could be negligible as an approximation.The grid dimension could easily satisfy the resolution requirement to describe the characteristics of a large eddy flow.Therefore,direct numerical simulation of N-S equations to obtain the turbulent flow field on the coarse grid could be realized.Numerical simulation of a two-dimensional flow over a backward-facing step at a Reynolds number Re=44000 was conducted using Euler-Lagrange finite element scheme based on the efficient operator-splitting method(OSFEM).The flow field was descretized by triangle meshes with 16669 nodes.The overall computational time only took 150 min on a PC.Both the characteristics of time-averaged and instantaneous turbulent flow were simultaneously obtained.The analysis showed that the calculated results were in good agreement with the test data.Hence,the DNS approach could become the reality to solve the complex turbulent flow with high Reynolds numbers in practical engineering.展开更多
For the large deformation of the flexible body may cause the fluid grid distortion,which will make the numerical calculation tedious,even to end,the numerical simulation of the flexible body coupling with the fluid is...For the large deformation of the flexible body may cause the fluid grid distortion,which will make the numerical calculation tedious,even to end,the numerical simulation of the flexible body coupling with the fluid is always a tough problem.In this paper,the flexible body is under two kinds of constrained conditions and the ratio of length-diameter is 1:30.The Reynolds number of the airflow is 513,belonging to the area of low Reynolds number.The control equations of the coupling of flexible body with airflow are built and the adaptive grid control method is adopted to conduct the three-dimensional numerical simulation of the movement of the flexible body.The numerical results show that it is possible to simulate the characteristics of the flexible body's movement in the low Reynolds number airflow when the appropriate control equations are modeled and suitable equation-solving method is adopted.Unconstrained flexible body would turn over forward along the airflow's diffusion direction,while constrained flexible body in the flow field will make periodic rotation motion along the axis of the flexible body,and the bending deformation is more obvious than that of unconstrained flexible body.The preliminary three-dimensional numerical simulation can provide references for further research on the characteristics of the yam movement in high Reynolds number airflow.展开更多
Free-moving simulations of airplanes, submarines and other automobiles under extreme and emergency conditions are becoming increasingly important from operational and tactical perspectives. Such simulations are fairly...Free-moving simulations of airplanes, submarines and other automobiles under extreme and emergency conditions are becoming increasingly important from operational and tactical perspectives. Such simulations are fairly challenging due to the extreme unsteady motions and high Re(Reynolds) numbers. The aim of this study is to perform a six-DOF motion simulation of a 6:1prolate spheroid that is falling in a fluid field. Prior to conducting the six-DOF simulation, some verification simulations were performed. First, a laminar flow past an inclined prolate spheroid at a Re number of 1000 and incidence angle of 45. with a tetrahedral mesh was simulated to verify the relevant targeted discrete method for an unstructured mesh. Second, to verify the LES(large eddy simulation) models and dependent parameters for the DDES(delayed detached eddy simulation), a turbulent flow past a sphere was performed at a subcritical Re number of 10000. Third, a steady maneuvering problem about a prolate spheroid pitching up from 0. to 30. incidence at a uniform angular velocity was established based on a dynamic tetrahedral mesh with changing topology and the ALE(arbitrary Lagrangian-Eulerian) method of fluid-structure coupling at a Re number of 4.2 × 10~6.Finally, two six-DOF motions of an inclined 6:1 prolate spheroid at an initial incidence of 45. were simulated at different Re numbers of 10000 and 4.2 × 10~6.展开更多
基金Supported by the National Nature Science Foundation of China(10472046)the Scientific Innova-tion Research of College Graduate in Jiangsu Province(CX08B-035Z)the Innovation and Excellence Foundation of Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ08-01)~~
文摘A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region.
基金supported by the National Basic Research Program of China (2006CB400503)the National Natural Science Foundation of China (40890155,40775051,and U0733002)Project KZCX2-YW-220 of the Chinese Academy of Sciences
文摘This study proposes a new explanation for the formation of precipitation anomaly patterns in the boreal summer during the E1 Nifio-Southem Oscillation (ENSO) developing and decaying phases. During the boreal sum- mer June-July-August (JJA) (0) of the E1 Nino (La Nina) developing phase, the upper level (300-100 hPa) positive potential temperature anomalies resemble a Ma- tsuno-Gill-type response to central Pacific heating (cool- ing), and the lower level (1000-850 hPa) potential tem- perature anomalies are consistent with local SST anoma- lies. During the boreal summer JJA(1) of the E1 Nifio (La Nifia) decaying phase, the upper level potential tempera- ture warms over the entire tropical zone and resembles a Matsuno-Gill-type response to Indian Ocean heating (cooling), and the lower level potential temperature anomalies follow local SST anomalies. The vertical heterogeneity of potential temperature anomalies influences the atmospheric stability, which in turn influences the precipitation anomaly pattern. The results of numerical experiments confirm our observations.
文摘The fractional volumetric lattice Boltzmann method with much better stability was used to simulate two-chmensional cavity flows. Because the effective viscosity was reduced by the fraction factor, it is very effective for simulating high Reynolds number flows. Simulations were carried out on a uniform grids system. The stream lines and the velocity profiles obtained from the simulations agree well with the standard lattice Boltzmann method simulations. Comparisons of detailed flow patterns with other studies via location of vortex centers are also satisfactory.
文摘As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the honeycomb lattice (Z = 3). The Liapunov exponent A is calculated for discussing the stability of the magnetization and it is used to determine the phase boundary. In the field amplitude ho / ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn. In contrast to previous analytical results that predicted a tricritical point separating a dynamic phase boundary line of continuous and discontinuous transitions, we find that the transition is always continuous. There is inconsistency between our results and previous analytical results, because they do not introduce sufficiently strong fluctuations.
文摘In this work we show that homogeneous Neumann boundary conditions inhibit the Coleman-Weinberg mechanism for spontaneous symmetry breaking in the scalar electrodynamics if the length of the finite region is small enough (a = e2Mφ-1, where M, is the mass of the scalar field generated by the Coleman-Weinberg mechanism).
基金a part of the Deutsche Forschungsgemeinschaft Joint Research Project FOR-1066
文摘Numerical investigations of the Darmstadt transonic single stage compressor (DTC), in the Rotor1-Stator1 configuration, aimed at advancing the understanding of the effect of different rotor tip gaps and transition modelling on the blade surfaces are presented. Steady three dimensional Reynolds Averaged Navier Stokes (RANS) simulations were performed to obtain the flow fields for the different configurations at different operating conditions using the RANS-Solver TRACE. The stage geometry and the multi-block structured grid were generated by G3DMESH and a grid sensitivity analysis was conducted. For the clearance gap region, a fully gridded special H-grid was chosen. Comparisons were made between the flow characteristic at design speed, representative for a transonic flow regime, and at 65% speed, representative for a subsonic flow regime. The computations were used to analyse the flow phenomena through the tip clearance region for the different configurations and their impact on the performance of the compressor stage.
文摘It is proved constructively that there exists a thin subset S of primes, satisfying for some absolute constant c>0, such that every sufficiently large odd integer N can beLet r be prime, and hi positive integers with (bj, r) = 1,j = 1, 2, 3. It is also proved that, for almost all prime moduli r< log- N, every sufficiently large odd integer N = b1 + b2 +ba(modr) can be represented as where c > 0 is an absolute constant.
基金supported by the National Natural Science Foundations of China (Grant Nos.11072218 and 11272287)the Natural Science Foundations of Zhejiang Province of China (Grant No.Y6110314)
文摘In this paper we give a new method to investigate Noether symmetries and conservation laws of nonconservative and nonholonomic mechanical systems on time scales , which unifies the Noether's theories of the two cases for the continuous and the discrete nonconservative and nonholonomic systems. Firstly, the exchanging relationships between the isochronous variation and the delta derivatives as well as the relationships between the isochronous variation and the total variation on time scales are obtained. Secondly, using the exchanging relationships, the Hamilton's principle is presented for nonconservative systems with delta derivatives and then the Lagrange equations of the systems are obtained. Thirdly, based on the quasi-invariance of Hamiltonian action of the systems under the infinitesimal transformations with respect to the time and generalized coordinates, the Noether's theorem and the conservation laws for nonconservative systems on time scales are given. Fourthly, the d'Alembert-Lagrange principle with delta derivatives is presented, and the Lagrange equations of nonholonomic systems with delta derivatives are obtained. In addition, the Noether's theorems and the conservation laws for nonholonomic systems on time scales are also obtained. Lastly, we present a new version of Noether's theorems for discrete systems. Several examples are given to illustrate the application of our results.
基金supported by the Major National Science and Technology Projects of China (Grant No. 2012ZX07506003)the Public Research and Development Project for Water Resource (Grant No. 201001030)
文摘Direct numerical simulation(DNS) was performed for the first time to study the flow over a backward-facing step at a high Reynolds number on a coarse grid.The flow over backward-facing step is the typical turbulent flow controlled by large eddy,in which the effect of small eddy could be negligible as an approximation.The grid dimension could easily satisfy the resolution requirement to describe the characteristics of a large eddy flow.Therefore,direct numerical simulation of N-S equations to obtain the turbulent flow field on the coarse grid could be realized.Numerical simulation of a two-dimensional flow over a backward-facing step at a Reynolds number Re=44000 was conducted using Euler-Lagrange finite element scheme based on the efficient operator-splitting method(OSFEM).The flow field was descretized by triangle meshes with 16669 nodes.The overall computational time only took 150 min on a PC.Both the characteristics of time-averaged and instantaneous turbulent flow were simultaneously obtained.The analysis showed that the calculated results were in good agreement with the test data.Hence,the DNS approach could become the reality to solve the complex turbulent flow with high Reynolds numbers in practical engineering.
基金supported by Zhejiang Provincial Natural Science Foundation under Grant No.LZ14E050004,LQ12A02002 etc
文摘For the large deformation of the flexible body may cause the fluid grid distortion,which will make the numerical calculation tedious,even to end,the numerical simulation of the flexible body coupling with the fluid is always a tough problem.In this paper,the flexible body is under two kinds of constrained conditions and the ratio of length-diameter is 1:30.The Reynolds number of the airflow is 513,belonging to the area of low Reynolds number.The control equations of the coupling of flexible body with airflow are built and the adaptive grid control method is adopted to conduct the three-dimensional numerical simulation of the movement of the flexible body.The numerical results show that it is possible to simulate the characteristics of the flexible body's movement in the low Reynolds number airflow when the appropriate control equations are modeled and suitable equation-solving method is adopted.Unconstrained flexible body would turn over forward along the airflow's diffusion direction,while constrained flexible body in the flow field will make periodic rotation motion along the axis of the flexible body,and the bending deformation is more obvious than that of unconstrained flexible body.The preliminary three-dimensional numerical simulation can provide references for further research on the characteristics of the yam movement in high Reynolds number airflow.
基金supported by the National Natural Science Founation of China(Grant No.11572350)
文摘Free-moving simulations of airplanes, submarines and other automobiles under extreme and emergency conditions are becoming increasingly important from operational and tactical perspectives. Such simulations are fairly challenging due to the extreme unsteady motions and high Re(Reynolds) numbers. The aim of this study is to perform a six-DOF motion simulation of a 6:1prolate spheroid that is falling in a fluid field. Prior to conducting the six-DOF simulation, some verification simulations were performed. First, a laminar flow past an inclined prolate spheroid at a Re number of 1000 and incidence angle of 45. with a tetrahedral mesh was simulated to verify the relevant targeted discrete method for an unstructured mesh. Second, to verify the LES(large eddy simulation) models and dependent parameters for the DDES(delayed detached eddy simulation), a turbulent flow past a sphere was performed at a subcritical Re number of 10000. Third, a steady maneuvering problem about a prolate spheroid pitching up from 0. to 30. incidence at a uniform angular velocity was established based on a dynamic tetrahedral mesh with changing topology and the ALE(arbitrary Lagrangian-Eulerian) method of fluid-structure coupling at a Re number of 4.2 × 10~6.Finally, two six-DOF motions of an inclined 6:1 prolate spheroid at an initial incidence of 45. were simulated at different Re numbers of 10000 and 4.2 × 10~6.