In this paper, we consider a diffusive Holling-Tanner predator prey model with Smith growth subject to Neumann boundary condition. We analyze the local stability, exis- tence of a Hopf bifurcation at the co-existence ...In this paper, we consider a diffusive Holling-Tanner predator prey model with Smith growth subject to Neumann boundary condition. We analyze the local stability, exis- tence of a Hopf bifurcation at the co-existence of the equilibrium and stability of bifur- cating periodic solutions of the system in the absence of diffusion. Furthermore the Turing instability and Hopf bifurcation analysis of the system with diffusion are studied. Finally numerical simulations are given to demonstrate the effectiveness of the theoretical analysis.展开更多
In this paper, an SIQS epidemic model with constant recruitment and standard inci- dence is investigated. Quarantine is taken into consideration on the basis of SIS model. The asymptotic stability of the equilibrium t...In this paper, an SIQS epidemic model with constant recruitment and standard inci- dence is investigated. Quarantine is taken into consideration on the basis of SIS model. The asymptotic stability of the equilibrium to a reaction^diffusion system with homo- geneous Neumann boundary conditions is considered. Sufficient conditions for the local and global asymptotic stability are given by linearization and the method of upper and lower solutions and its associated monotone iterations. The result shows that the disease-free equilibrium is globally asymptotically stable if the contact rate is small.展开更多
文摘In this paper, we consider a diffusive Holling-Tanner predator prey model with Smith growth subject to Neumann boundary condition. We analyze the local stability, exis- tence of a Hopf bifurcation at the co-existence of the equilibrium and stability of bifur- cating periodic solutions of the system in the absence of diffusion. Furthermore the Turing instability and Hopf bifurcation analysis of the system with diffusion are studied. Finally numerical simulations are given to demonstrate the effectiveness of the theoretical analysis.
基金This work was financially supported by the Natural Science Foundation of China (11271236, 11401356) and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2015JM1008).
文摘In this paper, an SIQS epidemic model with constant recruitment and standard inci- dence is investigated. Quarantine is taken into consideration on the basis of SIS model. The asymptotic stability of the equilibrium to a reaction^diffusion system with homo- geneous Neumann boundary conditions is considered. Sufficient conditions for the local and global asymptotic stability are given by linearization and the method of upper and lower solutions and its associated monotone iterations. The result shows that the disease-free equilibrium is globally asymptotically stable if the contact rate is small.