Sloshing phenomenon in the liquid cargo carriers has caught the attention of researchers as the interaction between the sloshing waves and structure is one of the key point and difficulty in the study of sloshing.In t...Sloshing phenomenon in the liquid cargo carriers has caught the attention of researchers as the interaction between the sloshing waves and structure is one of the key point and difficulty in the study of sloshing.In this paper,we captured the free surface with a volume of fluid(VOF) method and then calculated the motions and responses of the structure by adopting the Reynolds-averaged Navier-Stokes(RANS) equations for the whole fluid domain.With the use of user defined functions(UDF) in Fluent,the interaction between fluid and structure was then simulated.As a reasonable simplification,the authors studied the response of a single cantilever in a tank under sloshing loads;Further study should pay more attention to the mechanisms of interaction between sloshing waves and elastic structures.展开更多
This paper focuses on numerical simulations of bluff body aerodynamics with three-dimensional CFD(computational fluid dynamics) modeling,where a computational scheme for fluid-structure interactions is implemented.The...This paper focuses on numerical simulations of bluff body aerodynamics with three-dimensional CFD(computational fluid dynamics) modeling,where a computational scheme for fluid-structure interactions is implemented.The choice of an appropriate turbulence model for the computational modeling of bluff body aerodynamics using both two-dimensional and three-dimensional CFD numerical simulations is also considered.An efficient mesh control method which employs the mesh deformation technique is proposed to achieve better simulation results.Several long-span deck sections are chosen as examples which were stationary and pitching at a high Reynolds number.With the proposed CFD method and turbulence models,the force coefficients and flutter derivatives thus obtained are compared with the experimental measurement results and computed values completely from commercial software.Finally,a discussion on the effects of oscillation amplitude on the flutter instability of a bluff body is carried out with extended numerical simulations.These numerical analysis results demonstrate that the proposed three-dimensional CFD method,with proper turbulence modeling,has good accuracy and significant benefits for aerodynamic analysis and computational FSI studies of bluff bodies.展开更多
基金Supported by the National Natural Science Foundation of China under the Grant No.10472032,50879030
文摘Sloshing phenomenon in the liquid cargo carriers has caught the attention of researchers as the interaction between the sloshing waves and structure is one of the key point and difficulty in the study of sloshing.In this paper,we captured the free surface with a volume of fluid(VOF) method and then calculated the motions and responses of the structure by adopting the Reynolds-averaged Navier-Stokes(RANS) equations for the whole fluid domain.With the use of user defined functions(UDF) in Fluent,the interaction between fluid and structure was then simulated.As a reasonable simplification,the authors studied the response of a single cantilever in a tank under sloshing loads;Further study should pay more attention to the mechanisms of interaction between sloshing waves and elastic structures.
基金supported by the National Natural Science Foundation of China(Grant No.11172055)the Foundation for the Author of National Excellent Doctoral(Grant No.2002030)
文摘This paper focuses on numerical simulations of bluff body aerodynamics with three-dimensional CFD(computational fluid dynamics) modeling,where a computational scheme for fluid-structure interactions is implemented.The choice of an appropriate turbulence model for the computational modeling of bluff body aerodynamics using both two-dimensional and three-dimensional CFD numerical simulations is also considered.An efficient mesh control method which employs the mesh deformation technique is proposed to achieve better simulation results.Several long-span deck sections are chosen as examples which were stationary and pitching at a high Reynolds number.With the proposed CFD method and turbulence models,the force coefficients and flutter derivatives thus obtained are compared with the experimental measurement results and computed values completely from commercial software.Finally,a discussion on the effects of oscillation amplitude on the flutter instability of a bluff body is carried out with extended numerical simulations.These numerical analysis results demonstrate that the proposed three-dimensional CFD method,with proper turbulence modeling,has good accuracy and significant benefits for aerodynamic analysis and computational FSI studies of bluff bodies.