Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive a...Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive ascorbic acid (AA) in air at room temperature, which was an interesting phenomenon. The features of the two kinds of NPs were characterized by XRD, TEM and extinction spectra. Cu2O@Cu NPs with different shell thicknesses showed wide tunable optical properties for the localized surface plasmon (LSP) in metallic Cu. But Cu2O@Cu2O NPs did not indicate this feature. FTIR results reveal that Cu+ ions on the surface of Cu2O shell coordinate with N and O atoms in PVP and are further reduced to metallic Cu by excessive AA and then form a nucleation site on the surface of Cu2O nanocrystalline. PVP binds onto different sites to proceed with the reduction utill all the Cu sources in Cu2O shell are completely assumed.展开更多
Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function a...Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function as active sites of g-C3N4 is still highly desirable.To realize this goal,in this work,a facile sulfur-mediated photodeposition approach was developed.Specifically,photogenerated electrons excited by visible light reduce the S molecules absorbed on g-C3N4 surface to S^2‒,and subsequently NiS cocatalyst is formed in situ on the g-C3N4 surface by a combination of Ni2+and S2‒due to their small solubility product constant(Ksp=3.2×10^‒19).This approach has several advantages.The NiS cocatalyst is clearly in situ deposited on the photogenerated electron transfer sites of g-C3N4,and thus provides more active sites for H2 production.In addition,this method utilizes solar energy with mild reaction conditions at room temperature.Consequently,the synthesized NiS/g-C3N4 photocatalyst achieves excellent hydrogen generation performance with the performance of the optimal sample(244μmol h^‒1 g^‒1)close to that of 1 wt%Pt/g-C3N4(316μmol h^‒1 g^‒1,a well-known excellent photocatalyst).More importantly,the present sulfur-mediated photodeposition route is versatile and facile and can be used to deposit various metal sulfides such as CoSx,CuSx and AgSx on the g-C3N4 surface,and all the resulting metal sulfide-modified g-C3N4 photocatalysts exhibit improved H2-production performance.Our study offers a novel insight for the synthesis of high-efficiency photocatalysts.展开更多
The interaction mechanism of collector DLZ in the flotation process of chalcopyrite and pyrite was investigated through flotation experiments,zeta potential measurements and infrared spectrum analysis.Flotation test r...The interaction mechanism of collector DLZ in the flotation process of chalcopyrite and pyrite was investigated through flotation experiments,zeta potential measurements and infrared spectrum analysis.Flotation test results indicate that DLZ is the selective collector of chalcopyrite.Especially,the recovery of chalcopyrite is higher than 90% in neutral and weak alkaline systems,while the recovery of pyrite is less than 10%.When using CaO as pH regulator,at pH=7-11,the floatability of pyrite is depressed and the recovery is less than 5%.Zeta potential analysis shows that the zeta potential of chalcopyrite decreases more obviously than that of pyrite after interaction with DLZ,confirming that collector DLZ shows selectivity to chalcopyrite and pyrite.And FTIR results reveal that the flotation selectivity of collector DLZ is due to chemical absorption onto chalcopyrite surface and only physical absorption onto pyrite surface.展开更多
基金Projects(41172110,61107090)supported by the National Natural Science Foundation of China
文摘Cu2O@Cu2O core-shell nanoparticles (NPs) were prepared by using solution phase strategy. It was found that Cu2O@Cu2O NPs were easily converted to Cu2O@Cu NPs with the help of polyvinylpyrrolidine (PVP) and excessive ascorbic acid (AA) in air at room temperature, which was an interesting phenomenon. The features of the two kinds of NPs were characterized by XRD, TEM and extinction spectra. Cu2O@Cu NPs with different shell thicknesses showed wide tunable optical properties for the localized surface plasmon (LSP) in metallic Cu. But Cu2O@Cu2O NPs did not indicate this feature. FTIR results reveal that Cu+ ions on the surface of Cu2O shell coordinate with N and O atoms in PVP and are further reduced to metallic Cu by excessive AA and then form a nucleation site on the surface of Cu2O nanocrystalline. PVP binds onto different sites to proceed with the reduction utill all the Cu sources in Cu2O shell are completely assumed.
文摘Modification of nickel sulfide cocatalysts is considered to be a promising approach for efficient enhancement of the photocatalytic hydrogen production performance of g-C3N4.Providing more NiS cocatalyst to function as active sites of g-C3N4 is still highly desirable.To realize this goal,in this work,a facile sulfur-mediated photodeposition approach was developed.Specifically,photogenerated electrons excited by visible light reduce the S molecules absorbed on g-C3N4 surface to S^2‒,and subsequently NiS cocatalyst is formed in situ on the g-C3N4 surface by a combination of Ni2+and S2‒due to their small solubility product constant(Ksp=3.2×10^‒19).This approach has several advantages.The NiS cocatalyst is clearly in situ deposited on the photogenerated electron transfer sites of g-C3N4,and thus provides more active sites for H2 production.In addition,this method utilizes solar energy with mild reaction conditions at room temperature.Consequently,the synthesized NiS/g-C3N4 photocatalyst achieves excellent hydrogen generation performance with the performance of the optimal sample(244μmol h^‒1 g^‒1)close to that of 1 wt%Pt/g-C3N4(316μmol h^‒1 g^‒1,a well-known excellent photocatalyst).More importantly,the present sulfur-mediated photodeposition route is versatile and facile and can be used to deposit various metal sulfides such as CoSx,CuSx and AgSx on the g-C3N4 surface,and all the resulting metal sulfide-modified g-C3N4 photocatalysts exhibit improved H2-production performance.Our study offers a novel insight for the synthesis of high-efficiency photocatalysts.
基金Project(50674102) supported by the National Natural Science Foundation of China
文摘The interaction mechanism of collector DLZ in the flotation process of chalcopyrite and pyrite was investigated through flotation experiments,zeta potential measurements and infrared spectrum analysis.Flotation test results indicate that DLZ is the selective collector of chalcopyrite.Especially,the recovery of chalcopyrite is higher than 90% in neutral and weak alkaline systems,while the recovery of pyrite is less than 10%.When using CaO as pH regulator,at pH=7-11,the floatability of pyrite is depressed and the recovery is less than 5%.Zeta potential analysis shows that the zeta potential of chalcopyrite decreases more obviously than that of pyrite after interaction with DLZ,confirming that collector DLZ shows selectivity to chalcopyrite and pyrite.And FTIR results reveal that the flotation selectivity of collector DLZ is due to chemical absorption onto chalcopyrite surface and only physical absorption onto pyrite surface.