We theoretically investigate the wave-vector and temperature-dependent electron transport in a magneticnanostructure modulated by an applied bias.The large spin-polarization can be achieved in such a device,and the de...We theoretically investigate the wave-vector and temperature-dependent electron transport in a magneticnanostructure modulated by an applied bias.The large spin-polarization can be achieved in such a device,and the degreeof spin-polarization strongly depends on the transverse wave-vector and the temperature.These interesting propertiesmay be helpful to spin-polarize electrons into semiconductors,and this device may be used as a spin filter.展开更多
基金Supported by Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology) under Grant No.C201018 the National Natural Science Foundation of China under Grant No.10805035
文摘We theoretically investigate the wave-vector and temperature-dependent electron transport in a magneticnanostructure modulated by an applied bias.The large spin-polarization can be achieved in such a device,and the degreeof spin-polarization strongly depends on the transverse wave-vector and the temperature.These interesting propertiesmay be helpful to spin-polarize electrons into semiconductors,and this device may be used as a spin filter.