期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
民机适航取证试飞中ILS基准DDM值获取 被引量:2
1
作者 汤恒仁 赵俊茹 孔莹 《科学技术与工程》 北大核心 2013年第17期5054-5057,共4页
描述了民机适航取证试飞中仪表着陆系统(Instrument landing system,ILS)调制深度差(DDM)基准值的获取方法。主要工作包括三个方面:第一,在分析ILS基本原理及其航道位移灵敏度和下滑位移灵敏度相关要求的基础上,推导了ILS基准DDM值的理... 描述了民机适航取证试飞中仪表着陆系统(Instrument landing system,ILS)调制深度差(DDM)基准值的获取方法。主要工作包括三个方面:第一,在分析ILS基本原理及其航道位移灵敏度和下滑位移灵敏度相关要求的基础上,推导了ILS基准DDM值的理论计算方法;第二,根据光测和DGPS定位的特点,结合实际工程应用经验,提出了使用二者相结合的方式对试验机进行精确定位的方法,并给出了二者各自的使用条件;第三,结合MA600型飞机适航取证试飞对上述方法进行了应用与验证,证明了该方法的正确性。提出的ILS基准DDM值获取方法,对ILS适航试飞具有重要的参考和应用价值。 展开更多
关键词 适航取证试飞 仪表着陆系统 调制深度差 分GPS
下载PDF
A Signal Recognition Algorithm Based on Compressive Sensing and Improved Residual Network at Airport Terminal Area 被引量:1
2
作者 SHEN Zhiyuan LI Jia +1 位作者 WANG Qianqian HU Yingying 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期607-615,共9页
It is particular important to identify the pattern of communication signal quickly and accurately at the airport terminal area with the increasing number of radio equipments.A signal modulation pattern recognition met... It is particular important to identify the pattern of communication signal quickly and accurately at the airport terminal area with the increasing number of radio equipments.A signal modulation pattern recognition method based on compressive sensing and improved residual network is proposed in this work.Firstly,the compressive sensing method is introduced in the signal preprocessing process to discard the redundant components for sampled signals.And the compressed measurement signals are taken as the input of the network.Furthermore,based on a scaled exponential linear units activation function,the residual unit and the residual network are constructed in this work to solve the problem of long training time and indistinguishable sample similar characteristics.Finally,the global residual is introduced into the training network to guarantee the convergence of the network.Simulation results show that the proposed method has higher recognition efficiency and accuracy compared with the state-of-the-art deep learning methods. 展开更多
关键词 compressed sensing deep learning residual network modulation recognition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部