A bi-harmonic potential function was constructed in this study. Love solution was employed to obtain analytical solutions of uniformly loaded plates with two different types of clamped edges. The treatment of clamped ...A bi-harmonic potential function was constructed in this study. Love solution was employed to obtain analytical solutions of uniformly loaded plates with two different types of clamped edges. The treatment of clamped boundary conditions was the same as that adopted by Timoshenko and Goodier (1970). The analytical solution for the first type of clamped boundary condition is identical with that obtained by Luo et al.(2004), and the solutions for both types were compared with the FEM results and the calculations of thin plate theory.展开更多
In this paper we prove the uniform boundary Harnack principle in general open sets for harmonic functions with respect to a large class of rotationally symmetric purely discontinuous Levy processes.
We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:where rn is any positive integer satisfying 0 〈 2m 〈 n. We first prove ...We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:where rn is any positive integer satisfying 0 〈 2m 〈 n. We first prove that the positive solutions of (0.1) are super polyharmonic, i.e.,where x* = (x1,... ,Xn-1, --Xn) is the reflection of the point x about the plane Rn-1. Then, we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of (0.3), in which α can be any real number between 0 and n. By some Pohozaev type identities in integral forms, we prove a Liouville type theorem--the non-existence of positive solutions for (0.1).展开更多
The object of this paper is to study the non-tangential increasing properties of positiveharmonic function u in Lipschitz domain by means of Martin representation theory. A necessaryand sufficient condition of the con...The object of this paper is to study the non-tangential increasing properties of positiveharmonic function u in Lipschitz domain by means of Martin representation theory. A necessaryand sufficient condition of the control of growth of u near any fixed boundary point is obtained.It is shown that the non-tangential increasing degree of u near a boundary point is exactlythe local degree of its representation measure with respect to the harmonic measure. Someexamples are given.展开更多
The partial regularity of the weak heat flow of harmonic maps from a Riemannian manifold Al with boundary into general compact Riemannian manifold N without boundary is consid-ered. It is shown that the singular set S...The partial regularity of the weak heat flow of harmonic maps from a Riemannian manifold Al with boundary into general compact Riemannian manifold N without boundary is consid-ered. It is shown that the singular set Sing(u) of the weak heat flow satisfies H(Sing(u)) 0, with is = dimensionM. Here is Hausdorff measure with respect to parabolic metric ρ(x,t),(y,s)=max{|x-y|, }.展开更多
文摘A bi-harmonic potential function was constructed in this study. Love solution was employed to obtain analytical solutions of uniformly loaded plates with two different types of clamped edges. The treatment of clamped boundary conditions was the same as that adopted by Timoshenko and Goodier (1970). The analytical solution for the first type of clamped boundary condition is identical with that obtained by Luo et al.(2004), and the solutions for both types were compared with the FEM results and the calculations of thin plate theory.
基金supported by National Research Foundation of Korea (Grant No. 2011-0027230)supported in part by a grant from the Simons Foundation (Grant No. 208236)supportedin part by the MZOS Grant (Grant No. 037-0372790-2801)
文摘In this paper we prove the uniform boundary Harnack principle in general open sets for harmonic functions with respect to a large class of rotationally symmetric purely discontinuous Levy processes.
文摘We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:where rn is any positive integer satisfying 0 〈 2m 〈 n. We first prove that the positive solutions of (0.1) are super polyharmonic, i.e.,where x* = (x1,... ,Xn-1, --Xn) is the reflection of the point x about the plane Rn-1. Then, we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of (0.3), in which α can be any real number between 0 and n. By some Pohozaev type identities in integral forms, we prove a Liouville type theorem--the non-existence of positive solutions for (0.1).
基金Project supported by the National Natural Science Foundation of China
文摘The object of this paper is to study the non-tangential increasing properties of positiveharmonic function u in Lipschitz domain by means of Martin representation theory. A necessaryand sufficient condition of the control of growth of u near any fixed boundary point is obtained.It is shown that the non-tangential increasing degree of u near a boundary point is exactlythe local degree of its representation measure with respect to the harmonic measure. Someexamples are given.
基金the National Natural Science Foundation of China (No.10071013).
文摘The partial regularity of the weak heat flow of harmonic maps from a Riemannian manifold Al with boundary into general compact Riemannian manifold N without boundary is consid-ered. It is shown that the singular set Sing(u) of the weak heat flow satisfies H(Sing(u)) 0, with is = dimensionM. Here is Hausdorff measure with respect to parabolic metric ρ(x,t),(y,s)=max{|x-y|, }.