针对工业生产中铝挤压生产线存在的工序繁杂、排产量大等导致的生产工期较长、效率低等问题,建立了铝挤压生产线的时延Petri网(timed Petri net,TdPN)模型并进行合理性分析;将头脑风暴优化算法(brain storm optimization,BSO)引入TdPN模...针对工业生产中铝挤压生产线存在的工序繁杂、排产量大等导致的生产工期较长、效率低等问题,建立了铝挤压生产线的时延Petri网(timed Petri net,TdPN)模型并进行合理性分析;将头脑风暴优化算法(brain storm optimization,BSO)引入TdPN模型,提出了基于变迁序列个体编码解码方式的铝挤压排产调度问题优化调度算法。算法中采用模拟退火局部搜索机制改善BSO算法在后期的寻优性能,实现最小化批次完工时间的排产调度目标;仿真结果表明该方法能够缩短生产线排产工期提高生产效率,为工业生产排产调度问题提供了新的解决方法。展开更多
No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic al...No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic algo-rithm (GA) has the capability of global convergence and has been proven effective to solve NP-hard combinatorial op-timization problems,while simple heuristics have the advantage of fast local convergence and can be easily imple-mented. In order to avoid the defect of slow convergence or premature,a heuristic genetic algorithm is proposed by in-corporating the simple heuristics and local search into the traditional genetic algorithm. In this hybridized algorithm,the structural information of no-wait flowshops and high-effective heuristics are incorporated to design a new method for generating initial generation and a new crossover operator. The computational results show the developed heuristic ge-netic algorithm is efficient and the quality of its solution has advantage over the best known algorithm. It is suitable for solving the large scale practical problems and lays a foundation for the application of meta-heuristic algorithms in in-dustrial production.展开更多
文摘针对工业生产中铝挤压生产线存在的工序繁杂、排产量大等导致的生产工期较长、效率低等问题,建立了铝挤压生产线的时延Petri网(timed Petri net,TdPN)模型并进行合理性分析;将头脑风暴优化算法(brain storm optimization,BSO)引入TdPN模型,提出了基于变迁序列个体编码解码方式的铝挤压排产调度问题优化调度算法。算法中采用模拟退火局部搜索机制改善BSO算法在后期的寻优性能,实现最小化批次完工时间的排产调度目标;仿真结果表明该方法能够缩短生产线排产工期提高生产效率,为工业生产排产调度问题提供了新的解决方法。
基金Project 60304016 supported by the National Natural Science Foundation of China
文摘No-wait flowshop scheduling problems with the objective to minimize the total flow time is an important se-quencing problem in the field of developing production plans and has a wide engineering background. Genetic algo-rithm (GA) has the capability of global convergence and has been proven effective to solve NP-hard combinatorial op-timization problems,while simple heuristics have the advantage of fast local convergence and can be easily imple-mented. In order to avoid the defect of slow convergence or premature,a heuristic genetic algorithm is proposed by in-corporating the simple heuristics and local search into the traditional genetic algorithm. In this hybridized algorithm,the structural information of no-wait flowshops and high-effective heuristics are incorporated to design a new method for generating initial generation and a new crossover operator. The computational results show the developed heuristic ge-netic algorithm is efficient and the quality of its solution has advantage over the best known algorithm. It is suitable for solving the large scale practical problems and lays a foundation for the application of meta-heuristic algorithms in in-dustrial production.