Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to...Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.展开更多
The scheduling utility plays a fundamental role in addressing the commuting travel behaviours. A new scheduling utility,termed as DMRD-SU, was suggested based on some recent research findings in behavioural economics....The scheduling utility plays a fundamental role in addressing the commuting travel behaviours. A new scheduling utility,termed as DMRD-SU, was suggested based on some recent research findings in behavioural economics. DMRD-SU admitted the existence of positive arrival-caused utility. In addition, besides the travel-time-caused utility and arrival-caused utility, DMRD-SU firstly took the departure utility into account. The necessity of the departure utility in trip scheduling was analyzed comprehensively,and the corresponding individual trip scheduling model was presented. Based on a simple network, an analytical example was executed to characterize DMRD-SU. It can be found from the analytical example that: 1) DMRD-SU can predict the accumulation departure behaviors at NDT, which explains the formation of daily serious short-peak-hours in reality, while MRD-SU cannot; 2)Compared with MRD-SU, DMRD-SU predicts that people tend to depart later and its gross utility also decreases faster. Therefore,the departure utility should be considered to describe the traveler's scheduling behaviors better.展开更多
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor...To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.展开更多
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61521003)The National Key R&D Program of China (No.2016YFB0800101)+1 种基金the National Science Foundation for Distinguished Young Scholars of China (No.61602509)Henan Province Key Technologies R&D Program of China(No.172102210615)
文摘Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.
基金National Natural Science Foundation of P. R. China (60605023)Scientific Research Foundation Conducted by Dalian University of Technology and Shenyang Institute of Automation,Chinese Academy of Sciences
基金Projects(71131001,71271023,71471014)supported by National Natural Science Foundation of ChinaProject(2012CB725403)supported by National Basic Research Program of ChinaProject(2011AA110303)supported by National High Technology Research and Development Program of China
文摘The scheduling utility plays a fundamental role in addressing the commuting travel behaviours. A new scheduling utility,termed as DMRD-SU, was suggested based on some recent research findings in behavioural economics. DMRD-SU admitted the existence of positive arrival-caused utility. In addition, besides the travel-time-caused utility and arrival-caused utility, DMRD-SU firstly took the departure utility into account. The necessity of the departure utility in trip scheduling was analyzed comprehensively,and the corresponding individual trip scheduling model was presented. Based on a simple network, an analytical example was executed to characterize DMRD-SU. It can be found from the analytical example that: 1) DMRD-SU can predict the accumulation departure behaviors at NDT, which explains the formation of daily serious short-peak-hours in reality, while MRD-SU cannot; 2)Compared with MRD-SU, DMRD-SU predicts that people tend to depart later and its gross utility also decreases faster. Therefore,the departure utility should be considered to describe the traveler's scheduling behaviors better.
基金Project(ADLT 930-809R)supported by the Alabama Department of Transportation,USA
文摘To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.