When semiconductor quantum wells(SQWs) interact with lasers,the group velocity of the low-intensity light pulse is studied theoretically.It is shown that by adjusting the parameters,slow light propagation of the probe...When semiconductor quantum wells(SQWs) interact with lasers,the group velocity of the low-intensity light pulse is studied theoretically.It is shown that by adjusting the parameters,slow light propagation of the probe field can be exhibited in such a system.Meanwhile,the probe absorption-gain spectra can be changed from absorption to zero,i.e.,electromagnetically induced transparency(EIT).It is easy to observe the light propagation experimentally,and it leads to potential applications in many fields of solid-state quantum information,for example,optical switching,detection and quantum computing.展开更多
基金supported by the National Natural Science Foundation of China (Nos.61008063,10904015 and 10547108)the Key Project of the National Natural Science Foundation of China (No.60837004)
文摘When semiconductor quantum wells(SQWs) interact with lasers,the group velocity of the low-intensity light pulse is studied theoretically.It is shown that by adjusting the parameters,slow light propagation of the probe field can be exhibited in such a system.Meanwhile,the probe absorption-gain spectra can be changed from absorption to zero,i.e.,electromagnetically induced transparency(EIT).It is easy to observe the light propagation experimentally,and it leads to potential applications in many fields of solid-state quantum information,for example,optical switching,detection and quantum computing.