A high-accuracy,low-dropout (LDO) voltage regulator is presented. Using the slow-rolloff frequency compensation scheme, the LDO effectively overcomes the stability problem, facilitates the use of a ceramic capacitor...A high-accuracy,low-dropout (LDO) voltage regulator is presented. Using the slow-rolloff frequency compensation scheme, the LDO effectively overcomes the stability problem, facilitates the use of a ceramic capacitor, and improves the output voltage accuracy, which is critical for powering high-performance analog circuitry. The slow-rolloff compensation scheme is realized by introducing three pole-zero pairs, including the proposed polezero pair and sense zero. The post-layout simulation results demonstrate that this LDO has robust system stability, a high open-loop gain, and a high unit-gain frequency,which lead to excellent regulation and transient response performance. The line and load regulation are 27μV/V and 3.78μV/mA, and the overshoots of the output voltage are less than 30mV,while the dropout voltage is 120mV for a 150mA load current.展开更多
文摘A high-accuracy,low-dropout (LDO) voltage regulator is presented. Using the slow-rolloff frequency compensation scheme, the LDO effectively overcomes the stability problem, facilitates the use of a ceramic capacitor, and improves the output voltage accuracy, which is critical for powering high-performance analog circuitry. The slow-rolloff compensation scheme is realized by introducing three pole-zero pairs, including the proposed polezero pair and sense zero. The post-layout simulation results demonstrate that this LDO has robust system stability, a high open-loop gain, and a high unit-gain frequency,which lead to excellent regulation and transient response performance. The line and load regulation are 27μV/V and 3.78μV/mA, and the overshoots of the output voltage are less than 30mV,while the dropout voltage is 120mV for a 150mA load current.