Laser was coupled into an optical fiber,on which covered a layer of well-aligned carbon nanotubes(CNTs)serving as cathode,to tune the field emission of the cathode.CNT arrays as field emission cathode were synthesized...Laser was coupled into an optical fiber,on which covered a layer of well-aligned carbon nanotubes(CNTs)serving as cathode,to tune the field emission of the cathode.CNT arrays as field emission cathode were synthesized by chemical vapor deposition(CVD)on a naked fiber core.When the laser was coupled into the fiber,the turn-on voltage(Vto at a current density of 1 mA cm?2)decreased from 1.0 to 0.9 kV and the emission current density increased from 0.83 mA cm?2(at a 1 kV bias voltage)to3.04 mA cm?2 on 40μm diameter fiber.A photon absorption mechanism is attributed to the field emission improvement.The estimated effective work function of CNT arrays on the optical fiber decrease from 4.89 to 4.29 eV.The results show the possibility of constructing a waveguide type laser modulated field emission cathode.展开更多
The prediction method of dynamic wavelength is proposed for temperature tuning process. The temperature of the thermistor integrated in laser diode(LD) module is recorded to predict the LD chip temperature. Then accor...The prediction method of dynamic wavelength is proposed for temperature tuning process. The temperature of the thermistor integrated in laser diode(LD) module is recorded to predict the LD chip temperature. Then according to the injection current and priori tuning characteristics of the LDs, the emission wavelength is estimated in real time. The method is validated by using a 1.58 μm distributed feedback(DFB) LD. The absorption spectra of mixture gas of CO_2 and CO are measured by means of the thermal tuning gas sensing system. The center wavelength of each absorption line is compared with the data in HITRAN2012 database. The results show that the deviations are less than 5 pm. This method fully meets the needs of spectroscopic measurement, and can be applied to spectroscopy, optical communications and other fields.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.91123018,61172041,61172040,50975226,and 60801022)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2008AA03A314)the Fundamental Research Funds for the Central Universities
文摘Laser was coupled into an optical fiber,on which covered a layer of well-aligned carbon nanotubes(CNTs)serving as cathode,to tune the field emission of the cathode.CNT arrays as field emission cathode were synthesized by chemical vapor deposition(CVD)on a naked fiber core.When the laser was coupled into the fiber,the turn-on voltage(Vto at a current density of 1 mA cm?2)decreased from 1.0 to 0.9 kV and the emission current density increased from 0.83 mA cm?2(at a 1 kV bias voltage)to3.04 mA cm?2 on 40μm diameter fiber.A photon absorption mechanism is attributed to the field emission improvement.The estimated effective work function of CNT arrays on the optical fiber decrease from 4.89 to 4.29 eV.The results show the possibility of constructing a waveguide type laser modulated field emission cathode.
基金supported by the National Natural Science Foundation of China(No.61505142)the Tianjin Natural Science Foundation(No.16JCQNJC02100)
文摘The prediction method of dynamic wavelength is proposed for temperature tuning process. The temperature of the thermistor integrated in laser diode(LD) module is recorded to predict the LD chip temperature. Then according to the injection current and priori tuning characteristics of the LDs, the emission wavelength is estimated in real time. The method is validated by using a 1.58 μm distributed feedback(DFB) LD. The absorption spectra of mixture gas of CO_2 and CO are measured by means of the thermal tuning gas sensing system. The center wavelength of each absorption line is compared with the data in HITRAN2012 database. The results show that the deviations are less than 5 pm. This method fully meets the needs of spectroscopic measurement, and can be applied to spectroscopy, optical communications and other fields.