The objective of this study is to experimentally investigate the effectiveness of Tuned Liquid Dampers (TLDs) for suppressing the dynamic response of a platform structure subjected to wave loading and to explore the a...The objective of this study is to experimentally investigate the effectiveness of Tuned Liquid Dampers (TLDs) for suppressing the dynamic response of a platform structure subjected to wave loading and to explore the applicability of TLDs for suppressing the structural vibration of fixed offshore platforms. The experimental model is scaled according to a full size platform by matching its dynamic properties. Rectangular and circular TLDs of various sizes and water depths are examined. The experiments were performed in a 2-D wave flume. The effectiveness of TLDs is evaluated based on their response reduction. By observing the performance and the behavior of TLDs through laboratory experiments, the effects of a number of parameters including container shape, container size, number of dampers, frequency ratio, mass ratio, and incident wave characteristics are investigated.展开更多
Conventional angle-tuned thin-film filters have serious angle sensitivity for their low spacer effective refractive index, and it is difficult to fabricate their angle control system. In this paper, we propose and fab...Conventional angle-tuned thin-film filters have serious angle sensitivity for their low spacer effective refractive index, and it is difficult to fabricate their angle control system. In this paper, we propose and fabricate a novel 100 GHz angletuned thin-film filter stack with low angle sensitivity, which uses the high refractive index material TiO2 as the spacer, and its incident angle can be expanded to 25°. Compared with the traditional Ta2O5-SiO2 thin-film filter stack, the novel stack has fewer layers. Using the polarization beam splitters and the half wave plates, the polarization sensitivity of the angle-tuned filter can also be suppressed. Simulation results and the experiments show that the thin-film filter with low angle sensitivity has an effective tuning range of 33 nm, which can cover the whole C-band, and its angle control system is easy to be fabricated.展开更多
基金financially supported partially by the National Natural Science Foundation of China(No.G50179014)Ph.D.Education Fund from Education Ministry of China.
文摘The objective of this study is to experimentally investigate the effectiveness of Tuned Liquid Dampers (TLDs) for suppressing the dynamic response of a platform structure subjected to wave loading and to explore the applicability of TLDs for suppressing the structural vibration of fixed offshore platforms. The experimental model is scaled according to a full size platform by matching its dynamic properties. Rectangular and circular TLDs of various sizes and water depths are examined. The experiments were performed in a 2-D wave flume. The effectiveness of TLDs is evaluated based on their response reduction. By observing the performance and the behavior of TLDs through laboratory experiments, the effects of a number of parameters including container shape, container size, number of dampers, frequency ratio, mass ratio, and incident wave characteristics are investigated.
基金supported by the Scientific Research Project of Hubei Education Department(No.B2014246)the National Natural Science Foundation of China(No.61205062)+1 种基金the Natural Science Foundation of Hubei Province in China(No.2012FFB02701)the Project of Hubei Province Universities Outstanding Youth Scientific Innovation Team(No.T201431)
文摘Conventional angle-tuned thin-film filters have serious angle sensitivity for their low spacer effective refractive index, and it is difficult to fabricate their angle control system. In this paper, we propose and fabricate a novel 100 GHz angletuned thin-film filter stack with low angle sensitivity, which uses the high refractive index material TiO2 as the spacer, and its incident angle can be expanded to 25°. Compared with the traditional Ta2O5-SiO2 thin-film filter stack, the novel stack has fewer layers. Using the polarization beam splitters and the half wave plates, the polarization sensitivity of the angle-tuned filter can also be suppressed. Simulation results and the experiments show that the thin-film filter with low angle sensitivity has an effective tuning range of 33 nm, which can cover the whole C-band, and its angle control system is easy to be fabricated.