In order to address the issues that the magnetic coupled resonant wireless power transfer (MCR-WPT) system is sensitive to the resonant frequency and that transmission power is difficult to control with the non-resi...In order to address the issues that the magnetic coupled resonant wireless power transfer (MCR-WPT) system is sensitive to the resonant frequency and that transmission power is difficult to control with the non-resistive load in the MCR-WPT, a single-side regulation scheme for frequency and transmission power online is proposed, which is based on the inherent constraint relationships the among system parameters in the primary side. Thus, the communication between the primary side and the secondary side is avoided. First, the transfer models of resistance-capacitance load and resistance- inductance load are established, respectively. Next, the relationship between the input voltage phasor and the input current phasor is used to recognize the load property and value. Then, the coaxial rotation of the stepper motor and the rotating vacuum variable capacitor is conducted to unify resonant frequency both in the primary side and the secondary side. Finally, the regulations of both frequency and amplitude of input voltage are made to guarantee transmission power under a new resonant frequency point the same as the one when the only pure resistance part of load is accessed under the former resonant frequency point. Both simulation and experimental results indicate that the proposed regulation scheme can track remnant frequency and maintain transmission power constant.展开更多
A dual-band bandpass microwave photonic filter(MPF) based on stimulated Brillouin scattering(SBS) is theoretically analyzed and experimentally demonstrated. Two separated tunable laser sources(TLSs) are employed to ge...A dual-band bandpass microwave photonic filter(MPF) based on stimulated Brillouin scattering(SBS) is theoretically analyzed and experimentally demonstrated. Two separated tunable laser sources(TLSs) are employed to generate two passbands by implementing phase modulation to amplitude modulation conversion by using SBS induced sideband amplification. The center frequencies of both passbands can be independently tuned ranging from 1 GHz to 19 GHz. High resolution with 3 d B bandwidth less than 30 MHz and large out-of-band rejection about 40 d B under 25 m W optical pump power are achieved.展开更多
In this paper,we report the frequency comb response experimentally and analytically in a rhombic micro-resonator with parametrical modulation.When the electrostatically actuated rhombic micro-resonator is modulated ax...In this paper,we report the frequency comb response experimentally and analytically in a rhombic micro-resonator with parametrical modulation.When the electrostatically actuated rhombic micro-resonator is modulated axially by a low-frequency periodic excitation,a comb-like vibration response with few equidistant positioned fingers in the frequency domain is observed.The finger spacing of frequency comb response is exactly consistent with modulation frequency and the number and amplitude of the fingers can be tuned by modulation strength.A mixed frequency comb with extra comb fingers is further generated when the resonator is modulated simultaneously by two different low-frequency excitation signals.By adjusting the relation of the two modulation frequencies,unequal spacing frequency combs are achieved for the first time,which leads to a more flexible tunability of the comb spacing for different applications.Theoretical analysis based on the dynamic model well explains the corresponding observations.展开更多
基金The National Natural Science Youth Foundation of China(No.51507032)the Natural Science Foundation of Jiangsu Province(No.BK20150617)the Fundamental Research Funds for the Central Universities
文摘In order to address the issues that the magnetic coupled resonant wireless power transfer (MCR-WPT) system is sensitive to the resonant frequency and that transmission power is difficult to control with the non-resistive load in the MCR-WPT, a single-side regulation scheme for frequency and transmission power online is proposed, which is based on the inherent constraint relationships the among system parameters in the primary side. Thus, the communication between the primary side and the secondary side is avoided. First, the transfer models of resistance-capacitance load and resistance- inductance load are established, respectively. Next, the relationship between the input voltage phasor and the input current phasor is used to recognize the load property and value. Then, the coaxial rotation of the stepper motor and the rotating vacuum variable capacitor is conducted to unify resonant frequency both in the primary side and the secondary side. Finally, the regulations of both frequency and amplitude of input voltage are made to guarantee transmission power under a new resonant frequency point the same as the one when the only pure resistance part of load is accessed under the former resonant frequency point. Both simulation and experimental results indicate that the proposed regulation scheme can track remnant frequency and maintain transmission power constant.
基金supported by the Science and Technology Development Plan of Jilin Province(Nos.20150204003GX and 20160519010JH)the Science and Technology Plan of Changchun(No.14KG019)
文摘A dual-band bandpass microwave photonic filter(MPF) based on stimulated Brillouin scattering(SBS) is theoretically analyzed and experimentally demonstrated. Two separated tunable laser sources(TLSs) are employed to generate two passbands by implementing phase modulation to amplitude modulation conversion by using SBS induced sideband amplification. The center frequencies of both passbands can be independently tuned ranging from 1 GHz to 19 GHz. High resolution with 3 d B bandwidth less than 30 MHz and large out-of-band rejection about 40 d B under 25 m W optical pump power are achieved.
基金the National Natural Science Foundation of China(Grant Nos.12172323 and 52075432)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ22A020003)+1 种基金Fundamental Research Funds for the Central Universities(Grant No.G2022KY05104)Program for Innovation Team of Shaanxi Province(Grant No.2021TD-23).
文摘In this paper,we report the frequency comb response experimentally and analytically in a rhombic micro-resonator with parametrical modulation.When the electrostatically actuated rhombic micro-resonator is modulated axially by a low-frequency periodic excitation,a comb-like vibration response with few equidistant positioned fingers in the frequency domain is observed.The finger spacing of frequency comb response is exactly consistent with modulation frequency and the number and amplitude of the fingers can be tuned by modulation strength.A mixed frequency comb with extra comb fingers is further generated when the resonator is modulated simultaneously by two different low-frequency excitation signals.By adjusting the relation of the two modulation frequencies,unequal spacing frequency combs are achieved for the first time,which leads to a more flexible tunability of the comb spacing for different applications.Theoretical analysis based on the dynamic model well explains the corresponding observations.