In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulatio...In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic.展开更多
Coordinated scheduling of multimode plays a pivotal role in the rapid gathering and dissipating of passengers in transport hubs. Based on the survey data, the whole-day reaching time distribution at transfer points of...Coordinated scheduling of multimode plays a pivotal role in the rapid gathering and dissipating of passengers in transport hubs. Based on the survey data, the whole-day reaching time distribution at transfer points of passengers from the dominant mode to the connecting mode was achieved. A GI/M K/1 bulk service queuing system was constituted by putting the passengers' reaching time distribution as the input and the connecting mode as the service institution. Through queuing theory, the relationship between average queuing length under steady-state and headway of the connecting mode was achieved. By putting the minimum total cost of system as optimization objective, the headway as decision variable, a coordinated scheduling model of multimode in intermodal transit hubs was established. At last, a dynamic scheduling strategy was generated to cope with the unexpected changes of the dominant mode. The instance analysis indicates that this model can significantly reduce passengers' queuing time by approximately 17% with no apparently increase in departure frequency, which provides a useful solution for the coordinated scheduling of different transport modes in hubs.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 60634010 and 60776829New Century Excellent Talents in University under Grant No. NCET-06-0074
文摘In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic.
基金Projects(51278221,51378076)supported by the National Natural Science Foundation of China
文摘Coordinated scheduling of multimode plays a pivotal role in the rapid gathering and dissipating of passengers in transport hubs. Based on the survey data, the whole-day reaching time distribution at transfer points of passengers from the dominant mode to the connecting mode was achieved. A GI/M K/1 bulk service queuing system was constituted by putting the passengers' reaching time distribution as the input and the connecting mode as the service institution. Through queuing theory, the relationship between average queuing length under steady-state and headway of the connecting mode was achieved. By putting the minimum total cost of system as optimization objective, the headway as decision variable, a coordinated scheduling model of multimode in intermodal transit hubs was established. At last, a dynamic scheduling strategy was generated to cope with the unexpected changes of the dominant mode. The instance analysis indicates that this model can significantly reduce passengers' queuing time by approximately 17% with no apparently increase in departure frequency, which provides a useful solution for the coordinated scheduling of different transport modes in hubs.