期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
Structural attributes,evolution and petroleum geological significances of the Tongnan negative structure in the central Sichuan Basin,SW China 被引量:1
1
作者 TIAN Fanglei WU Furong +6 位作者 HE Dengfa ZHAO Xiaohui LIU Huan ZHANG Qiaoyi LE Jinbo CHEN Jingyu LU Guo 《Petroleum Exploration and Development》 SCIE 2023年第5期1120-1136,共17页
The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influ... The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention. 展开更多
关键词 structural attribute structural evolution Sinian Dengying Formation oil and gas negative structure Gaoshiti-Moxi area Sichuan Basin
下载PDF
Negative compressibility property in hinging open-cell Kelvin structure
2
作者 Meng Ma Xiao-Qin Zhou +1 位作者 Hao Liu Hao-Cheng Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期536-546,共11页
A new three-dimensional(3D)cellular model based on hinging open-cell Kelvin structure is proposed for its negative compressibility property.It is shown that this model has adjustable compressibility and does exhibit n... A new three-dimensional(3D)cellular model based on hinging open-cell Kelvin structure is proposed for its negative compressibility property.It is shown that this model has adjustable compressibility and does exhibit negative compressibility for some certain conformations.And further study shows that the images of compressibility are symmetrical about the certain lines,which indicates that the mechanical properties of the model in the three axial directions are interchangeable and the model itself has a certain geometric symmetry.A comparison of the Kelvin model with its anisotropic form with the dodecahedron model shows that the Kelvin model has stronger negative compressibility property in all three directions.Therefore,a new and potential method to improve negative compressibility property can be derived by selecting the system type with lower symmetry and increasing the number of geometric parameters. 展开更多
关键词 negative compressibility 3D cellular model open-cell Kelvin structure analytical methods
下载PDF
Design of a Microwave Filter Based on a Novel Negative Coupling Structure with Conical Through-Hole
3
作者 Shunliang Meng Fei Liang +3 位作者 Wenzhong Lu Zihang Lin Yuhao Yin Rong Zhang 《China Communications》 SCIE CSCD 2022年第2期148-157,共10页
This article introduces the design theory of ceramic waveguide filter and proposes a new type of negative coupling structure with a conical throughhole,which has fine-adjustment of negative coupling without significan... This article introduces the design theory of ceramic waveguide filter and proposes a new type of negative coupling structure with a conical throughhole,which has fine-adjustment of negative coupling without significantly increasing the insertion loss of the filter.Based on this,the article proposes an eightcavity ceramic waveguide filter design for 5G base stations.It also presents a detailed discussion on the influence of the cross-coupling slot lengths L2 and L4 on the transmission zeros positions during the filter optimization process and the relevant change rules.For the proposed optimized filter,the observed performance indicators include the center frequency of 3.5 GHz,working bandwidth of 200 MHz,an insertion loss of≤2.0 dB,return loss of≥19 dB,and out-of-band nearend suppression and out-of-band far-end suppression of≥39 dB and≥63 dB,respectively.The test performance results obtained for the sample,with structural parameters as per the simulation model,were in good agreement with the simulation results. 展开更多
关键词 ceramic waveguide filter negative coupling structure out-of-band suppression characteristics cross-coupling slot
下载PDF
Design and evaluation of cab seat suspension system based on negative stiffness structure
4
作者 Liao Xin Zhang Ning +1 位作者 Xing Haijun Zhang Wanjie 《Journal of Southeast University(English Edition)》 EI CAS 2021年第2期153-163,共11页
To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffn... To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffness nonlinear kinetic equation is established by designing the seat negative stiffness suspension structure(NSS).Using MATLAB,the different parameters of the suspension system and their influences on the dynamic stiffness are analyzed.The ideal configuration parameter range of the suspension system is obtained.Meanwhile,the optimization model of NSS is proposed,and the vibration transmissibility characteristics are simulated and analyzed by different methods.The results show that the displacement and acceleration amplitudes of the optimized seat suspension system are evidently reduced,and the four-time power vibration dose value and root mean square calculation values in the vertical vibration direction of the seat decrease by 86%and 87%,respectively.Seat effective amplitude transmissibility(SEAT)and the vibration transmissibility ratio values also decrease.Moreover,the peak frequencies of the vibration transmitted to the driver deviate from the key frequency values,which easily cause human discomfort.Thus,the design of the seat suspension system has no effect on the health condition of the driver after being vibrated.The findings also illustrate that the NSS suspension system has good vibration-isolation performance,and the driver's ride comfort is improved. 展开更多
关键词 construction machinery negative stiffness structure seat suspension system dynamic properties ride comfort
下载PDF
Experimental crushing behavior and energy absorption of angular gradient honeycomb structures under quasi-static and dynamic compression
5
作者 Jiachen Li Yuchen Wei +2 位作者 Hao Wu Xingyu Shen Mengqi Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期47-63,共17页
The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and... The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments. 展开更多
关键词 negative Poisson's ratio Gradient honeycomb structure Quasi-static compression Dynamic impact Titanium alloy
下载PDF
Negative Differential Resistance and Spin-Filtering Effects in Zigzag Graphene Nanoribbons with Nitrogen-Vacancy Defects
6
作者 徐婷 黄静 李群祥 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第6期653-658,I0003,共7页
We explore the electronic and transport properties of zigzag graphene nanoribbons (GNRs) with nitrogen-vacancy defects by performing fully self-consistent spin-polarized density functional theory calculations combin... We explore the electronic and transport properties of zigzag graphene nanoribbons (GNRs) with nitrogen-vacancy defects by performing fully self-consistent spin-polarized density functional theory calculations combined with non-equilibrium Green's function technique. We observe robust negative di erential resistance (NDR) effect in all examined molecular junctions. Through analyzing the calculated electronic structures and the bias-dependent transmission coefficients, we find that the narrow density of states of electrodes and the bias-dependent effective coupling between the central molecular orbitals and the electrode subbands are responsible for the observed NDR phenomenon. In addition, the obvious di erence of the transmission spectra of two spin channels is observed in some bias ranges, which leads to the near perfect spin-filtering effect. These theoretical findings imply that GNRs with nitrogenvacancy defects hold great potential for building molecular devices. 展开更多
关键词 Defective graphene nanoribbon Electronic structure Spin-polarized transport property negative differential resistance Spin-filtering
下载PDF
A new design of 3D-printed orthopedic bone plates with auxeticstructures to mitigate stress shielding and improve intra-operative bending 被引量:6
7
作者 Sanjairaj Vijayavenkataraman Akhil Gopinath Wen F.Lu 《Bio-Design and Manufacturing》 SCIE CSCD 2020年第2期98-108,共11页
Orthopedic bone plates are most commonly used for bone fracture fixation for more than 100 years.The bone plate design had evolved over time overcoming many challenges such as insufficient strength and excessive plate... Orthopedic bone plates are most commonly used for bone fracture fixation for more than 100 years.The bone plate design had evolved over time overcoming many challenges such as insufficient strength and excessive plate–bone contact affecting the blood circulation.However,it is only made of two materials,either stainless steel(AISI 316L)or titanium(Ti–6Al–4V).There are two main limitations of metallic bone implants,namely stress shielding and the problem of malocclusion caused by the displacement of the fracture site during healing.To overcome the two problems,a new bone plate design with the incorporation of auxetic structures is proposed in this work.This study aims to use auxetic structure section in the bone plate that would decrease the stiffness of the region,thereby mitigating the stress-shielding effect and at the same time act as a deformable section to enable intra-operative bending for effective alignment while having enough bending strength and stiffness.Two different auxetic structures namely re-entrant honeycomb and missing rib structures were considered.The auxetic structure incorporated bone plates were designed,finite element analysis was done,fabricated using direct metal laser sintering technique,and tested.The results indicate that the re-entrant honeycomb structure incorporated bone plates serve as an effective bone design compared to the conventional bone plate design,in terms of stress shielding and intra-operative bending while offering similar mechanical and bending strength. 展开更多
关键词 Bone PLATES negative Poisson's ratio structures 3D PRINTING Additive manufacturing Stress SHIELDING
下载PDF
Negative thermal expansion of Ca2RuO4 with oxygen vacancies 被引量:1
8
作者 Sen Xu Yangming Hu +6 位作者 Yuan Liang Chenfei Shi Yuling Su Juan Guo Qilong Gao Mingju Chao Erjun Liang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第8期393-399,共7页
Oxygen vacancies have a profound effect on the magnetic,electronic,and transport properties of transition metal oxides but little is known about their effect on thermal expansion.Herein we report the effect of oxygen ... Oxygen vacancies have a profound effect on the magnetic,electronic,and transport properties of transition metal oxides but little is known about their effect on thermal expansion.Herein we report the effect of oxygen defects on the structure formation and thermal expansion properties of the layered perovskite Ca2RuO4(CRO).It is shown that the CRO containing excess oxygen crystallizes in a metallic L-CRO phase without structure transition from 100 K to 500 K and displays a normal thermal expansion behavior,whereas those with oxygen vacancies adopt at room temperature an insulating S-CRO phase and exhibit an enormous negative thermal expansion(NTE)from 100 K to about 360 K,from where they undergo a structure transition to a high temperature metallic L-CRO phase.Compared to the L-CRO containing excess oxygen,the S-CRO structure has increasingly large orthorhombic strain and distinctive in-plane distortion upon cooling.The in-plane distortion of the RuO6 octahedra reaches a maximum across 260 K and then relaxes monotonically,providing a structure evidence for the appearance of an antiferromagnetic orbital ordering in the paramagnetic phase and the A_g phonon mode suppression and phase flip across the same temperature found recently.Both the L-and S-CRO display an antiferromagnetic ordering at about 150-110 K,with ferromagnetic ordering components at lower temperature.The NTE in S-CRO is a result of a complex interplay among the spin,orbital,and lattice. 展开更多
关键词 negative thermal expansion structure oxygen vacancies metal-insulator transition octahedra distortion
下载PDF
Topological study about failure behavior and energy absorption of honeycomb structures under various strain rates 被引量:1
9
作者 Yu-chen Wei Meng-jie Tian +4 位作者 Chun-yang Huang Shao-wu Wang Xing Li Qian-ran Hu Meng-qi Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期214-227,共14页
High-speed impact threats and terrorist actions on the battlefield require the development of more effective protective materials and structures,and various protective structure is designed according their energy-abso... High-speed impact threats and terrorist actions on the battlefield require the development of more effective protective materials and structures,and various protective structure is designed according their energy-absorbing characteristics.In this research,the deformation behavior,microscopic failure modes and energy absorption characteristics of re-entrant hexagonal structure,regular hexagonal structure and regular quadrilateral structure are studied under different strain rates impact.The re-entrant hexagonal structure forms a“X”-shaped deformation zone,the regular quadrilateral and regular hexagonal structure form an“I”-shaped deformation zone.The microscopic appearance of the section is a mixed fracture form.The effects of the topological shape,cell angle,and cell height on the impact behavior of the structure were evaluated.When the cell height is fixed and the cell angle is changed,the energy absorption of the structure increase and then decrease as the relative density increase.The mechanical properties of the structure are optimal when the relative density is about 18.6%and the cell angle is22.5°.When the cell angle is fixed and the cell height is changed,as the relative density increases,the energy absorption of the structure gradually increases.The regular quadrilateral structure and the reentrant hexagonal structure experienced clear strain rate effects under dynamic impact conditions;the regular hexagonal structure did not exhibit obvious strain rate effects.The results presented herein provide a basis for further rational design and selection of shock-resistant protective structures that perform well in high-speed impact environments. 展开更多
关键词 Honeycomb structures Impact loading negative Poisson's ratio Titanium alloy Dynamic response
下载PDF
Semi-empirical estimation for enhancing negative thermal expansion in PbTiO_(3)-based perovskites 被引量:1
10
作者 Tao Yang Longlong Fan +3 位作者 Yilin Wang Kun Lin Jun Chen Xianran Xing 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第4期783-786,共4页
Generally,most materials expand when heated and contract when cooled,whereas negative thermal expansion(NTE)materials are very rare.As a typical NTE material,PbTiO_(3) and related compounds have drawn particular inter... Generally,most materials expand when heated and contract when cooled,whereas negative thermal expansion(NTE)materials are very rare.As a typical NTE material,PbTiO_(3) and related compounds have drawn particular interest in recent years.The discovery of an enhanced NTE system in PbTiO_(3) is beneficial to deepen our understanding of its mechanism and regulate its properties.At present,the method of discriminating an enhanced NTE material based on PbTiO_(3) is not universal.Here,we propose a semi-empirical method through evaluating the average lattice distortion in related systems to estimate the relative coefficient of thermal expansion conveniently.The rationality of the method was verified by the analysis of the 0.6PbTiO_(3)-0.4Bi(Ga_(x)Fe_(1-x))O_(3) system.So far,all PbTiO_(3)-based compounds with enhanced NTE conform well to this method.This method provides the possibility to find more enhanced NTE PbTiO_(3)-based materials. 展开更多
关键词 enhanced negative thermal expansion crystal structure lead titanate spontaneous polarization
下载PDF
Evaluation of urban underground space resources using a negative list method: Taking Xi'an City as an example in China 被引量:9
11
作者 Mao-sheng Zhang Hua-qi Wang +3 位作者 Ying Dong Lin Li Ping-ping Sun Ge Zhang 《China Geology》 2020年第1期124-136,共13页
Utilization of urban underground space has become a vital approach to alleviate the strain on urban land resources,and to optimize the structure and pattem of the city.It is also very important to improve the city env... Utilization of urban underground space has become a vital approach to alleviate the strain on urban land resources,and to optimize the structure and pattem of the city.It is also very important to improve the city environment,build livable city and increase the capacity of the city.Based on the analysis of existing evaluation methods and their problems,a method for evaluating underground space resources based on a negative list of adverse factors affecting underground space development is proposed,to be primarily used in urban planning stages.A list of the adverse factors is established,including limiting factors,constraining factors and influencing factors.Taking Xi'an as an example,using a geographical information system platform,a negative list of adverse factors for the underground space resources in Xi'an City are evaluated,and preventive measures are proposed.Natural resources,exploitable resources,and the potential growth of exploitable underground space resources are evaluated.Underground space assessment in the different development stages of the city,collaborative utilization and safety evaluation for multiple subsurface resources,environmental impact and assessment,as well as evaluation methods based on big data and intelligent optimization algorithms are all discussed with the aim of serving city planning and construction. 展开更多
关键词 Urban geology negative list Natural resources for underground space Exploitable resources for underground space 3D geological structure model GIS platform Urban geological survey engineering Xi'an City Shaanxi Province China
下载PDF
Effects of W^(6+) occupying Sc^(3+) on the structure, vibration, and thermal expansion properties of scandium tungstate
12
作者 Dongxia Chen Qiang Sun +4 位作者 Zhanjun Yu Mingyu Li Juan Guo Mingju Chao Erjun Liang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期442-448,共7页
We experimentally investigate effects of W^(6+)occupying the sites of Sc^(3+)in the unit cell of Sc_(2) W_(3) O_(12)(Sc_(8) W_(12) O_(48))on the structure, vibration and thermal expansion. The composition and structur... We experimentally investigate effects of W^(6+)occupying the sites of Sc^(3+)in the unit cell of Sc_(2) W_(3) O_(12)(Sc_(8) W_(12) O_(48))on the structure, vibration and thermal expansion. The composition and structure of the doped sample(Sc_(6) W_(2))W_(12) O_(48±δ)(with two W^(6+)occupying two sites of Sc^(3+)in the unit cell of Sc_(8) W_(12) O_(48)) are analyzed and identified by combining the x-ray photoelectron spectroscopy and the synchronous x-ray diffraction with first-principles calculations based on density functional theory. Results show that the crystal with even W^(6+)occupying even Sc^(3+)in the unit cell is stable and maintains the orthorhombic structure at room temperature. The structure of the doped sample is similar to that of Sc_(2) W_(3) O_(12), and with even W occupying even positions of Sc in the unit cell and constituting the WO_(6) octahedra. Raman analyses show that the doped sample possesses stronger W–O bonds and wider Raman linewidths than those of Sc_(2) W_(3) O_(12). The sample doped with W also exhibits intrinsic negative thermal expansion in the measured range of 150 K–650 K. 展开更多
关键词 structure negative thermal expansion Raman spectroscopy
下载PDF
Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)_(4)
13
作者 Chunyan Wang Qilong Gao +1 位作者 Andrea Sanson and Yu Jia 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期99-103,共5页
The control of thermal expansion is essential in applications where thermal stability is required from fiber optics coatings,high performance fuel cell cathodes to tooth fillings.Negative thermal expansion(NTE)materia... The control of thermal expansion is essential in applications where thermal stability is required from fiber optics coatings,high performance fuel cell cathodes to tooth fillings.Negative thermal expansion(NTE)materials,although rare,are fundamental for this purpose.This work focuses on studying tetracyanidoborate salt CuB(CN)_(4),an interesting cubicstructure material that displays large isotropic NTE.A joint study of synchrotron x-ray diffraction,temperature-dependent Raman spectroscopy,and lattice dynamics calculations was conducted,showing that not only low-frequency optical modes(transverse thermal vibrations of N and C atoms)but also the acoustic modes(the vibrations of Cu atoms as a collective torsion of the neighboring atoms),contribute to NTE.As a result,new insights were gained into the NTE mechanism of CuB(CN)_(4) and related framework materials. 展开更多
关键词 negative thermal expansion Prussian blue analogues crystal structure PHONONS
下载PDF
Influence of particle structure on electrochemical character of composite graphite
14
作者 Cuiwei Du +2 位作者 Yujuan Zhao 《Journal of University of Science and Technology Beijing》 CSCD 2003年第1期61-64,共4页
The natural graphite has been used as the anode material for Lithium-Ion batteries, because of its low cost, chemical stability and excellent reversibility for Li+ insertion. However, the slow diffusion rate of lithiu... The natural graphite has been used as the anode material for Lithium-Ion batteries, because of its low cost, chemical stability and excellent reversibility for Li+ insertion. However, the slow diffusion rate of lithium ion and poor compatibility with electrolyte solutions make it difficult to use in some conditions. In order to solve these problems, an epoxy-coke/graphite composite has been manufactured. The particle of composite carbonaceous material coated on non-graphitizable (hard) carbon matrix. Due to the disordered structure, the diffusion rate of lithium species in the non-graphitzable carbon is remarkably fast and less anisotropic. The process for preparing a composite carbon powder provides a promising new anode material with superior electrochemical properties for Li-ion batteries. The unique structure of epoxy-coke/graphite composite electrodes results in much better kinetics, also better recharge ability and initial charge/discharge efficiency. 展开更多
关键词 lithium-ion batteries negative materials natural graphite structure model
下载PDF
Negative effects of artiffcial nest boxes on birds:A review
15
作者 Luchang Zhang Xingjian Ma +4 位作者 Zhiyu Chen Chunying Wang Zicheng Liu Xiang Li Xiaoying Xing 《Avian Research》 SCIE CSCD 2023年第2期257-266,共10页
Artificial nest boxes are placed to attract birds to nest and breed in a specific location,and they are widely used in avian ecology research and in the attraction of insectivorous birds.There is evidence that artific... Artificial nest boxes are placed to attract birds to nest and breed in a specific location,and they are widely used in avian ecology research and in the attraction of insectivorous birds.There is evidence that artificial nest boxes can adversely affect breeding fitness but no great focus has been placed on this issue by researchers.Therefore,we retrieved 321 research papers regarding artificial nest boxes published from 2003 to 2022 and used the'Biblioshiny'program to extract and integrate keywords;we then summarized the adverse effects of artificial nest boxes on avian breeding success.The studies highlighted many drawbacks and misuses in the designing and placement of nest boxes;furthermore,bird attraction was decreased by their inappropriate selection,thus reducing breeding success.Regarding nest box production,there were shortcomings in the construction material,color,smell,and structural design of the boxes used.Nest boxes were also placed at inappropriate densities,locations,orientations,heights,and managed incorrectly.Finally,we propose suggestions for more efficient and safer artificial nest boxes for future use in avian ecology research and bird conservation. 展开更多
关键词 Artificial nest box Avian breeding Management negative effect Nest box hanging Nest box location Nest box structure
下载PDF
An Electron Model Based on the Fine Structure Constant
16
作者 Arlen Young 《Journal of Modern Physics》 CAS 2023年第5期553-561,共9页
In previous publications, the author has proposed a model of the electron’s internal structure, wherein a positively-charged negative mass outer shell and a negatively-charged positive mass central core are proposed ... In previous publications, the author has proposed a model of the electron’s internal structure, wherein a positively-charged negative mass outer shell and a negatively-charged positive mass central core are proposed to resolve the electron’s charge and mass inconsistencies. That model is modified in this document by assuming the electron’s radius is exactly equal to the classical electron radius. The attributes of the internal components of the electron’s structure have been recalculated accordingly. The shape of the electron is also predicted, and found to be slightly aspherical on the order of an oblate ellipsoid. This shape is attributed to centrifugal force and compliant outer shell material. It is interesting to note that all of the electron’s attributes, both external and internal, with the exception of mass and angular moment, are functions of the fine structure constant a, and can be calculated from just three additional constants: electron mass, Planck’s constant, and speed of light. In particular, the ratios of the outer shell charge and mass to the electron charge and mass, respectively, are 3/2a. The ratios of the central core charge and mass to the electron charge and mass, respectively, are 1-(3/2a). Attributes of the electron are compared with those of the muon. Charge and spin angular momentum are the same, while mass, magnetic moment, and radius appear to be related by the fine structure constant. The mass of the electron outer shell is nearly equal to the mass of the muon. The muon internal structure can be modeled exactly the same as for the electron, with exactly the same attribute relationships. 展开更多
关键词 Fine structure Constant negative Mass Electron Shape Electron structure Electron Mass Inconsistency Electron Charge Inconsistency MUON
下载PDF
Using of an Auxetic Structure as Reinforcement of a Bending Reinforced Concrete Beam
17
作者 Tarik Baran 《Journal of Mechanics Engineering and Automation》 2019年第1期1-16,共16页
Materials which have negative Poisson’s ratio are entitled as auxetics.Auxetics can be designed as micro-to macro-sized structures.The use of auxetics in civil engineering structures has been studied only to a limite... Materials which have negative Poisson’s ratio are entitled as auxetics.Auxetics can be designed as micro-to macro-sized structures.The use of auxetics in civil engineering structures has been studied only to a limited extent.In this study,a re-entrant medium-size auxetic structure is employed as reinforcement of a reinforced concrete beam.The beam is subjected to static and dynamic loading conditions and then investigated by means of maximum vertical displacements of the beam.Besides,normal stresses and shear stresses of the concrete are also assessed.To interpret the performance of the auxetic reinforcement,obtained results are compared with the results of another beam which has non-auxetic reinforcement.The results show that these structures behave with bending compatibility as expected and due to the negative Poisson’s ratio,they led to shear strength increase.Auxetic structures can be employed as reinforcement in a beam.Besides,they can be employed without concrete to increase the shear strength in the case of high shear and impact strength if it is needed. 展开更多
关键词 AUXETIC RE-ENTRANT cell structure negative Poisson’s ratio AUXETIC REINFORCEMENT INDENTATION resistance
下载PDF
Advanced Algorithm for Parameters Estimation of Negative Binomial Distribution with High Dimensional Sparse Group Structure
18
作者 LI Meiqi JIN Baisuo 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第5期2173-2195,共23页
Negative binomial regression is a powerful technique for modeling count data,particularly when dealing with overdispersion.However,estimating the parameters for large-dimensional sparse models is challenging due to th... Negative binomial regression is a powerful technique for modeling count data,particularly when dealing with overdispersion.However,estimating the parameters for large-dimensional sparse models is challenging due to the complexity of optimizing the mean and dispersion parameter of the negative binomial distribution.To address this issue,the authors propose a novel approach that employs two iterations of the majorize-minimize(MM)algorithm,one for estimating the dispersion parameter and the other for estimating the mean parameters.These approaches improve the convergence speed and stability of the algorithm.The authors also use group penalty for variable selection,which enhances the accuracy and efficiency of the algorithm.The proposed method provides an explicit solution,simplifies the iteration process,and maintains good stability while ensuring algorithm convergence.Furthermore,the authors apply the proposed algorithm to the zero-inflated model and demonstrate its promising predictive performance on specific data sets.The research has important implications for count data modeling and analysis in various fields,such as data mining,machine learning,and bioinformatics. 展开更多
关键词 Group structure majorize-minimize(MM) negative binomial
原文传递
Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis 被引量:9
19
作者 Yingjun Wang Zhongyuan Liao +2 位作者 Shengyu Shi Zhenpei Wang Leong Hien Poh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期433-458,共26页
Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.A... Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches. 展开更多
关键词 DATA-DRIVEN BP neural network petal-shaped auxetics negative Poisson’s ratio structural design isogeometric analysis.
下载PDF
A comparison of core–shell Si/C and embedded structure Si/C composites as negative materials for lithium-ion batteries 被引量:2
20
作者 Shuai-Jin Wu Zhao-Hui Wu +3 位作者 Sheng Fang Xiao-Peng Qi Bing Yu Juan-Yu Yang 《Rare Metals》 SCIE EI CAS CSCD 2021年第9期2440-2446,共7页
Silicon materials have attracted wide attention as negative materials due to exceptional gravimetric capacity and abundance. The strategy of using nano-silicon materials as structural units to construct nano/micro-str... Silicon materials have attracted wide attention as negative materials due to exceptional gravimetric capacity and abundance. The strategy of using nano-silicon materials as structural units to construct nano/micro-structured silicon-based negative materials for lithium-ion batteries has come into sight in recent years. In order to provide guidance for the material structure design of micro-sized silicon-based negative materials in practical application, in this work, two commercialized nano/micro-structured silicon-based negative materials with a specific capacity of about 650 mAh·g^(-1) were investigated and compared in the aspects of material microstructure, electrochemical performance of half cells, and electrode morphological evolution during cycling. The cycling performance(with capacity retention ratio of about 17% higher after 100 cycles) and electrode structure maintenance of the embedded structure Si/C material are superior to those of core–shell Si/C material. This research can provide guidance on design and application of nano/micro-structured silicon-based negative materials. 展开更多
关键词 Lithium-ion battery negative materials Silicon-based materials Material structure
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部