The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influ...The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention.展开更多
A new three-dimensional(3D)cellular model based on hinging open-cell Kelvin structure is proposed for its negative compressibility property.It is shown that this model has adjustable compressibility and does exhibit n...A new three-dimensional(3D)cellular model based on hinging open-cell Kelvin structure is proposed for its negative compressibility property.It is shown that this model has adjustable compressibility and does exhibit negative compressibility for some certain conformations.And further study shows that the images of compressibility are symmetrical about the certain lines,which indicates that the mechanical properties of the model in the three axial directions are interchangeable and the model itself has a certain geometric symmetry.A comparison of the Kelvin model with its anisotropic form with the dodecahedron model shows that the Kelvin model has stronger negative compressibility property in all three directions.Therefore,a new and potential method to improve negative compressibility property can be derived by selecting the system type with lower symmetry and increasing the number of geometric parameters.展开更多
This article introduces the design theory of ceramic waveguide filter and proposes a new type of negative coupling structure with a conical throughhole,which has fine-adjustment of negative coupling without significan...This article introduces the design theory of ceramic waveguide filter and proposes a new type of negative coupling structure with a conical throughhole,which has fine-adjustment of negative coupling without significantly increasing the insertion loss of the filter.Based on this,the article proposes an eightcavity ceramic waveguide filter design for 5G base stations.It also presents a detailed discussion on the influence of the cross-coupling slot lengths L2 and L4 on the transmission zeros positions during the filter optimization process and the relevant change rules.For the proposed optimized filter,the observed performance indicators include the center frequency of 3.5 GHz,working bandwidth of 200 MHz,an insertion loss of≤2.0 dB,return loss of≥19 dB,and out-of-band nearend suppression and out-of-band far-end suppression of≥39 dB and≥63 dB,respectively.The test performance results obtained for the sample,with structural parameters as per the simulation model,were in good agreement with the simulation results.展开更多
To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffn...To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffness nonlinear kinetic equation is established by designing the seat negative stiffness suspension structure(NSS).Using MATLAB,the different parameters of the suspension system and their influences on the dynamic stiffness are analyzed.The ideal configuration parameter range of the suspension system is obtained.Meanwhile,the optimization model of NSS is proposed,and the vibration transmissibility characteristics are simulated and analyzed by different methods.The results show that the displacement and acceleration amplitudes of the optimized seat suspension system are evidently reduced,and the four-time power vibration dose value and root mean square calculation values in the vertical vibration direction of the seat decrease by 86%and 87%,respectively.Seat effective amplitude transmissibility(SEAT)and the vibration transmissibility ratio values also decrease.Moreover,the peak frequencies of the vibration transmitted to the driver deviate from the key frequency values,which easily cause human discomfort.Thus,the design of the seat suspension system has no effect on the health condition of the driver after being vibrated.The findings also illustrate that the NSS suspension system has good vibration-isolation performance,and the driver's ride comfort is improved.展开更多
The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and...The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.展开更多
We explore the electronic and transport properties of zigzag graphene nanoribbons (GNRs) with nitrogen-vacancy defects by performing fully self-consistent spin-polarized density functional theory calculations combin...We explore the electronic and transport properties of zigzag graphene nanoribbons (GNRs) with nitrogen-vacancy defects by performing fully self-consistent spin-polarized density functional theory calculations combined with non-equilibrium Green's function technique. We observe robust negative di erential resistance (NDR) effect in all examined molecular junctions. Through analyzing the calculated electronic structures and the bias-dependent transmission coefficients, we find that the narrow density of states of electrodes and the bias-dependent effective coupling between the central molecular orbitals and the electrode subbands are responsible for the observed NDR phenomenon. In addition, the obvious di erence of the transmission spectra of two spin channels is observed in some bias ranges, which leads to the near perfect spin-filtering effect. These theoretical findings imply that GNRs with nitrogenvacancy defects hold great potential for building molecular devices.展开更多
Orthopedic bone plates are most commonly used for bone fracture fixation for more than 100 years.The bone plate design had evolved over time overcoming many challenges such as insufficient strength and excessive plate...Orthopedic bone plates are most commonly used for bone fracture fixation for more than 100 years.The bone plate design had evolved over time overcoming many challenges such as insufficient strength and excessive plate–bone contact affecting the blood circulation.However,it is only made of two materials,either stainless steel(AISI 316L)or titanium(Ti–6Al–4V).There are two main limitations of metallic bone implants,namely stress shielding and the problem of malocclusion caused by the displacement of the fracture site during healing.To overcome the two problems,a new bone plate design with the incorporation of auxetic structures is proposed in this work.This study aims to use auxetic structure section in the bone plate that would decrease the stiffness of the region,thereby mitigating the stress-shielding effect and at the same time act as a deformable section to enable intra-operative bending for effective alignment while having enough bending strength and stiffness.Two different auxetic structures namely re-entrant honeycomb and missing rib structures were considered.The auxetic structure incorporated bone plates were designed,finite element analysis was done,fabricated using direct metal laser sintering technique,and tested.The results indicate that the re-entrant honeycomb structure incorporated bone plates serve as an effective bone design compared to the conventional bone plate design,in terms of stress shielding and intra-operative bending while offering similar mechanical and bending strength.展开更多
Oxygen vacancies have a profound effect on the magnetic,electronic,and transport properties of transition metal oxides but little is known about their effect on thermal expansion.Herein we report the effect of oxygen ...Oxygen vacancies have a profound effect on the magnetic,electronic,and transport properties of transition metal oxides but little is known about their effect on thermal expansion.Herein we report the effect of oxygen defects on the structure formation and thermal expansion properties of the layered perovskite Ca2RuO4(CRO).It is shown that the CRO containing excess oxygen crystallizes in a metallic L-CRO phase without structure transition from 100 K to 500 K and displays a normal thermal expansion behavior,whereas those with oxygen vacancies adopt at room temperature an insulating S-CRO phase and exhibit an enormous negative thermal expansion(NTE)from 100 K to about 360 K,from where they undergo a structure transition to a high temperature metallic L-CRO phase.Compared to the L-CRO containing excess oxygen,the S-CRO structure has increasingly large orthorhombic strain and distinctive in-plane distortion upon cooling.The in-plane distortion of the RuO6 octahedra reaches a maximum across 260 K and then relaxes monotonically,providing a structure evidence for the appearance of an antiferromagnetic orbital ordering in the paramagnetic phase and the A_g phonon mode suppression and phase flip across the same temperature found recently.Both the L-and S-CRO display an antiferromagnetic ordering at about 150-110 K,with ferromagnetic ordering components at lower temperature.The NTE in S-CRO is a result of a complex interplay among the spin,orbital,and lattice.展开更多
High-speed impact threats and terrorist actions on the battlefield require the development of more effective protective materials and structures,and various protective structure is designed according their energy-abso...High-speed impact threats and terrorist actions on the battlefield require the development of more effective protective materials and structures,and various protective structure is designed according their energy-absorbing characteristics.In this research,the deformation behavior,microscopic failure modes and energy absorption characteristics of re-entrant hexagonal structure,regular hexagonal structure and regular quadrilateral structure are studied under different strain rates impact.The re-entrant hexagonal structure forms a“X”-shaped deformation zone,the regular quadrilateral and regular hexagonal structure form an“I”-shaped deformation zone.The microscopic appearance of the section is a mixed fracture form.The effects of the topological shape,cell angle,and cell height on the impact behavior of the structure were evaluated.When the cell height is fixed and the cell angle is changed,the energy absorption of the structure increase and then decrease as the relative density increase.The mechanical properties of the structure are optimal when the relative density is about 18.6%and the cell angle is22.5°.When the cell angle is fixed and the cell height is changed,as the relative density increases,the energy absorption of the structure gradually increases.The regular quadrilateral structure and the reentrant hexagonal structure experienced clear strain rate effects under dynamic impact conditions;the regular hexagonal structure did not exhibit obvious strain rate effects.The results presented herein provide a basis for further rational design and selection of shock-resistant protective structures that perform well in high-speed impact environments.展开更多
Generally,most materials expand when heated and contract when cooled,whereas negative thermal expansion(NTE)materials are very rare.As a typical NTE material,PbTiO_(3) and related compounds have drawn particular inter...Generally,most materials expand when heated and contract when cooled,whereas negative thermal expansion(NTE)materials are very rare.As a typical NTE material,PbTiO_(3) and related compounds have drawn particular interest in recent years.The discovery of an enhanced NTE system in PbTiO_(3) is beneficial to deepen our understanding of its mechanism and regulate its properties.At present,the method of discriminating an enhanced NTE material based on PbTiO_(3) is not universal.Here,we propose a semi-empirical method through evaluating the average lattice distortion in related systems to estimate the relative coefficient of thermal expansion conveniently.The rationality of the method was verified by the analysis of the 0.6PbTiO_(3)-0.4Bi(Ga_(x)Fe_(1-x))O_(3) system.So far,all PbTiO_(3)-based compounds with enhanced NTE conform well to this method.This method provides the possibility to find more enhanced NTE PbTiO_(3)-based materials.展开更多
Utilization of urban underground space has become a vital approach to alleviate the strain on urban land resources,and to optimize the structure and pattem of the city.It is also very important to improve the city env...Utilization of urban underground space has become a vital approach to alleviate the strain on urban land resources,and to optimize the structure and pattem of the city.It is also very important to improve the city environment,build livable city and increase the capacity of the city.Based on the analysis of existing evaluation methods and their problems,a method for evaluating underground space resources based on a negative list of adverse factors affecting underground space development is proposed,to be primarily used in urban planning stages.A list of the adverse factors is established,including limiting factors,constraining factors and influencing factors.Taking Xi'an as an example,using a geographical information system platform,a negative list of adverse factors for the underground space resources in Xi'an City are evaluated,and preventive measures are proposed.Natural resources,exploitable resources,and the potential growth of exploitable underground space resources are evaluated.Underground space assessment in the different development stages of the city,collaborative utilization and safety evaluation for multiple subsurface resources,environmental impact and assessment,as well as evaluation methods based on big data and intelligent optimization algorithms are all discussed with the aim of serving city planning and construction.展开更多
We experimentally investigate effects of W^(6+)occupying the sites of Sc^(3+)in the unit cell of Sc_(2) W_(3) O_(12)(Sc_(8) W_(12) O_(48))on the structure, vibration and thermal expansion. The composition and structur...We experimentally investigate effects of W^(6+)occupying the sites of Sc^(3+)in the unit cell of Sc_(2) W_(3) O_(12)(Sc_(8) W_(12) O_(48))on the structure, vibration and thermal expansion. The composition and structure of the doped sample(Sc_(6) W_(2))W_(12) O_(48±δ)(with two W^(6+)occupying two sites of Sc^(3+)in the unit cell of Sc_(8) W_(12) O_(48)) are analyzed and identified by combining the x-ray photoelectron spectroscopy and the synchronous x-ray diffraction with first-principles calculations based on density functional theory. Results show that the crystal with even W^(6+)occupying even Sc^(3+)in the unit cell is stable and maintains the orthorhombic structure at room temperature. The structure of the doped sample is similar to that of Sc_(2) W_(3) O_(12), and with even W occupying even positions of Sc in the unit cell and constituting the WO_(6) octahedra. Raman analyses show that the doped sample possesses stronger W–O bonds and wider Raman linewidths than those of Sc_(2) W_(3) O_(12). The sample doped with W also exhibits intrinsic negative thermal expansion in the measured range of 150 K–650 K.展开更多
The control of thermal expansion is essential in applications where thermal stability is required from fiber optics coatings,high performance fuel cell cathodes to tooth fillings.Negative thermal expansion(NTE)materia...The control of thermal expansion is essential in applications where thermal stability is required from fiber optics coatings,high performance fuel cell cathodes to tooth fillings.Negative thermal expansion(NTE)materials,although rare,are fundamental for this purpose.This work focuses on studying tetracyanidoborate salt CuB(CN)_(4),an interesting cubicstructure material that displays large isotropic NTE.A joint study of synchrotron x-ray diffraction,temperature-dependent Raman spectroscopy,and lattice dynamics calculations was conducted,showing that not only low-frequency optical modes(transverse thermal vibrations of N and C atoms)but also the acoustic modes(the vibrations of Cu atoms as a collective torsion of the neighboring atoms),contribute to NTE.As a result,new insights were gained into the NTE mechanism of CuB(CN)_(4) and related framework materials.展开更多
The natural graphite has been used as the anode material for Lithium-Ion batteries, because of its low cost, chemical stability and excellent reversibility for Li+ insertion. However, the slow diffusion rate of lithiu...The natural graphite has been used as the anode material for Lithium-Ion batteries, because of its low cost, chemical stability and excellent reversibility for Li+ insertion. However, the slow diffusion rate of lithium ion and poor compatibility with electrolyte solutions make it difficult to use in some conditions. In order to solve these problems, an epoxy-coke/graphite composite has been manufactured. The particle of composite carbonaceous material coated on non-graphitizable (hard) carbon matrix. Due to the disordered structure, the diffusion rate of lithium species in the non-graphitzable carbon is remarkably fast and less anisotropic. The process for preparing a composite carbon powder provides a promising new anode material with superior electrochemical properties for Li-ion batteries. The unique structure of epoxy-coke/graphite composite electrodes results in much better kinetics, also better recharge ability and initial charge/discharge efficiency.展开更多
Artificial nest boxes are placed to attract birds to nest and breed in a specific location,and they are widely used in avian ecology research and in the attraction of insectivorous birds.There is evidence that artific...Artificial nest boxes are placed to attract birds to nest and breed in a specific location,and they are widely used in avian ecology research and in the attraction of insectivorous birds.There is evidence that artificial nest boxes can adversely affect breeding fitness but no great focus has been placed on this issue by researchers.Therefore,we retrieved 321 research papers regarding artificial nest boxes published from 2003 to 2022 and used the'Biblioshiny'program to extract and integrate keywords;we then summarized the adverse effects of artificial nest boxes on avian breeding success.The studies highlighted many drawbacks and misuses in the designing and placement of nest boxes;furthermore,bird attraction was decreased by their inappropriate selection,thus reducing breeding success.Regarding nest box production,there were shortcomings in the construction material,color,smell,and structural design of the boxes used.Nest boxes were also placed at inappropriate densities,locations,orientations,heights,and managed incorrectly.Finally,we propose suggestions for more efficient and safer artificial nest boxes for future use in avian ecology research and bird conservation.展开更多
In previous publications, the author has proposed a model of the electron’s internal structure, wherein a positively-charged negative mass outer shell and a negatively-charged positive mass central core are proposed ...In previous publications, the author has proposed a model of the electron’s internal structure, wherein a positively-charged negative mass outer shell and a negatively-charged positive mass central core are proposed to resolve the electron’s charge and mass inconsistencies. That model is modified in this document by assuming the electron’s radius is exactly equal to the classical electron radius. The attributes of the internal components of the electron’s structure have been recalculated accordingly. The shape of the electron is also predicted, and found to be slightly aspherical on the order of an oblate ellipsoid. This shape is attributed to centrifugal force and compliant outer shell material. It is interesting to note that all of the electron’s attributes, both external and internal, with the exception of mass and angular moment, are functions of the fine structure constant a, and can be calculated from just three additional constants: electron mass, Planck’s constant, and speed of light. In particular, the ratios of the outer shell charge and mass to the electron charge and mass, respectively, are 3/2a. The ratios of the central core charge and mass to the electron charge and mass, respectively, are 1-(3/2a). Attributes of the electron are compared with those of the muon. Charge and spin angular momentum are the same, while mass, magnetic moment, and radius appear to be related by the fine structure constant. The mass of the electron outer shell is nearly equal to the mass of the muon. The muon internal structure can be modeled exactly the same as for the electron, with exactly the same attribute relationships.展开更多
Materials which have negative Poisson’s ratio are entitled as auxetics.Auxetics can be designed as micro-to macro-sized structures.The use of auxetics in civil engineering structures has been studied only to a limite...Materials which have negative Poisson’s ratio are entitled as auxetics.Auxetics can be designed as micro-to macro-sized structures.The use of auxetics in civil engineering structures has been studied only to a limited extent.In this study,a re-entrant medium-size auxetic structure is employed as reinforcement of a reinforced concrete beam.The beam is subjected to static and dynamic loading conditions and then investigated by means of maximum vertical displacements of the beam.Besides,normal stresses and shear stresses of the concrete are also assessed.To interpret the performance of the auxetic reinforcement,obtained results are compared with the results of another beam which has non-auxetic reinforcement.The results show that these structures behave with bending compatibility as expected and due to the negative Poisson’s ratio,they led to shear strength increase.Auxetic structures can be employed as reinforcement in a beam.Besides,they can be employed without concrete to increase the shear strength in the case of high shear and impact strength if it is needed.展开更多
Negative binomial regression is a powerful technique for modeling count data,particularly when dealing with overdispersion.However,estimating the parameters for large-dimensional sparse models is challenging due to th...Negative binomial regression is a powerful technique for modeling count data,particularly when dealing with overdispersion.However,estimating the parameters for large-dimensional sparse models is challenging due to the complexity of optimizing the mean and dispersion parameter of the negative binomial distribution.To address this issue,the authors propose a novel approach that employs two iterations of the majorize-minimize(MM)algorithm,one for estimating the dispersion parameter and the other for estimating the mean parameters.These approaches improve the convergence speed and stability of the algorithm.The authors also use group penalty for variable selection,which enhances the accuracy and efficiency of the algorithm.The proposed method provides an explicit solution,simplifies the iteration process,and maintains good stability while ensuring algorithm convergence.Furthermore,the authors apply the proposed algorithm to the zero-inflated model and demonstrate its promising predictive performance on specific data sets.The research has important implications for count data modeling and analysis in various fields,such as data mining,machine learning,and bioinformatics.展开更多
Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.A...Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches.展开更多
Silicon materials have attracted wide attention as negative materials due to exceptional gravimetric capacity and abundance. The strategy of using nano-silicon materials as structural units to construct nano/micro-str...Silicon materials have attracted wide attention as negative materials due to exceptional gravimetric capacity and abundance. The strategy of using nano-silicon materials as structural units to construct nano/micro-structured silicon-based negative materials for lithium-ion batteries has come into sight in recent years. In order to provide guidance for the material structure design of micro-sized silicon-based negative materials in practical application, in this work, two commercialized nano/micro-structured silicon-based negative materials with a specific capacity of about 650 mAh·g^(-1) were investigated and compared in the aspects of material microstructure, electrochemical performance of half cells, and electrode morphological evolution during cycling. The cycling performance(with capacity retention ratio of about 17% higher after 100 cycles) and electrode structure maintenance of the embedded structure Si/C material are superior to those of core–shell Si/C material. This research can provide guidance on design and application of nano/micro-structured silicon-based negative materials.展开更多
基金Supported by the National Natural Science Foundation of China(U19B6003-01).
文摘The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention.
基金the National Natural Science Foundation of China(Grant Nos.U1601203 and U19A20104)the Jilin Provincial Science and Technology Development Program,China(Grant Nos.20180101321JC and 20190302099GX)+2 种基金the Jilin Provincial Industrial Technology of Research and Development,China(Grant No.2019C037-3)the Science and Technology Project of Jilin Provincial Department of Education,China(Grant No.JJKH20200955KJ)the Graduate Innovation Fund of Jilin University,China(Grant No.101832018C191).
文摘A new three-dimensional(3D)cellular model based on hinging open-cell Kelvin structure is proposed for its negative compressibility property.It is shown that this model has adjustable compressibility and does exhibit negative compressibility for some certain conformations.And further study shows that the images of compressibility are symmetrical about the certain lines,which indicates that the mechanical properties of the model in the three axial directions are interchangeable and the model itself has a certain geometric symmetry.A comparison of the Kelvin model with its anisotropic form with the dodecahedron model shows that the Kelvin model has stronger negative compressibility property in all three directions.Therefore,a new and potential method to improve negative compressibility property can be derived by selecting the system type with lower symmetry and increasing the number of geometric parameters.
基金supported by the National Natural Science Fund Joint Fund Project(No.U21B2068)the Major Science and Technology Innovation Project of WenZhou(No.ZG2021014).
文摘This article introduces the design theory of ceramic waveguide filter and proposes a new type of negative coupling structure with a conical throughhole,which has fine-adjustment of negative coupling without significantly increasing the insertion loss of the filter.Based on this,the article proposes an eightcavity ceramic waveguide filter design for 5G base stations.It also presents a detailed discussion on the influence of the cross-coupling slot lengths L2 and L4 on the transmission zeros positions during the filter optimization process and the relevant change rules.For the proposed optimized filter,the observed performance indicators include the center frequency of 3.5 GHz,working bandwidth of 200 MHz,an insertion loss of≤2.0 dB,return loss of≥19 dB,and out-of-band nearend suppression and out-of-band far-end suppression of≥39 dB and≥63 dB,respectively.The test performance results obtained for the sample,with structural parameters as per the simulation model,were in good agreement with the simulation results.
基金The National Natural Science Foundation of China(No.11902207,No.52072072)the Natural Science Foundation of Hebei Province(A2020210018)Higher Education Teaching Research Project(No.Y2020-15).
文摘To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffness nonlinear kinetic equation is established by designing the seat negative stiffness suspension structure(NSS).Using MATLAB,the different parameters of the suspension system and their influences on the dynamic stiffness are analyzed.The ideal configuration parameter range of the suspension system is obtained.Meanwhile,the optimization model of NSS is proposed,and the vibration transmissibility characteristics are simulated and analyzed by different methods.The results show that the displacement and acceleration amplitudes of the optimized seat suspension system are evidently reduced,and the four-time power vibration dose value and root mean square calculation values in the vertical vibration direction of the seat decrease by 86%and 87%,respectively.Seat effective amplitude transmissibility(SEAT)and the vibration transmissibility ratio values also decrease.Moreover,the peak frequencies of the vibration transmitted to the driver deviate from the key frequency values,which easily cause human discomfort.Thus,the design of the seat suspension system has no effect on the health condition of the driver after being vibrated.The findings also illustrate that the NSS suspension system has good vibration-isolation performance,and the driver's ride comfort is improved.
基金financially supported by National Natural Science Foundation of China,China (Grant No.52022012)National Key R&D Program for Young Scientists of China,China (Grant No.2022YFC3080900)。
文摘The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.
基金This work was partially supported by the National Natural Science Foundation of China (No.20903003 and No.21273208), the Anhui Provincial Natural Science Foundation (No.1408085QB26), the China Postdoctoral Science Foundation (No.2012M511409), the Supercomputer Center of Chinese Academy of Sciences, and University of Science and Technology of China and Shanghai Supercomputer Centers.
文摘We explore the electronic and transport properties of zigzag graphene nanoribbons (GNRs) with nitrogen-vacancy defects by performing fully self-consistent spin-polarized density functional theory calculations combined with non-equilibrium Green's function technique. We observe robust negative di erential resistance (NDR) effect in all examined molecular junctions. Through analyzing the calculated electronic structures and the bias-dependent transmission coefficients, we find that the narrow density of states of electrodes and the bias-dependent effective coupling between the central molecular orbitals and the electrode subbands are responsible for the observed NDR phenomenon. In addition, the obvious di erence of the transmission spectra of two spin channels is observed in some bias ranges, which leads to the near perfect spin-filtering effect. These theoretical findings imply that GNRs with nitrogenvacancy defects hold great potential for building molecular devices.
文摘Orthopedic bone plates are most commonly used for bone fracture fixation for more than 100 years.The bone plate design had evolved over time overcoming many challenges such as insufficient strength and excessive plate–bone contact affecting the blood circulation.However,it is only made of two materials,either stainless steel(AISI 316L)or titanium(Ti–6Al–4V).There are two main limitations of metallic bone implants,namely stress shielding and the problem of malocclusion caused by the displacement of the fracture site during healing.To overcome the two problems,a new bone plate design with the incorporation of auxetic structures is proposed in this work.This study aims to use auxetic structure section in the bone plate that would decrease the stiffness of the region,thereby mitigating the stress-shielding effect and at the same time act as a deformable section to enable intra-operative bending for effective alignment while having enough bending strength and stiffness.Two different auxetic structures namely re-entrant honeycomb and missing rib structures were considered.The auxetic structure incorporated bone plates were designed,finite element analysis was done,fabricated using direct metal laser sintering technique,and tested.The results indicate that the re-entrant honeycomb structure incorporated bone plates serve as an effective bone design compared to the conventional bone plate design,in terms of stress shielding and intra-operative bending while offering similar mechanical and bending strength.
基金the National Natural Science Foundation of China(Grant Nos.11874328 and 11574276)The SXRD experiments were performed at the BL02B2 and BL04B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute(JASRI+1 种基金proposal Nos.2019A1167,2019A1095,and 2019A1340)We also acknowledge the help of Beamline Scientists Dr.Lirong Zheng(BSRF),Dr.Shogo Kawaguchi,and Dr.Koji Ohara(SPring-8).
文摘Oxygen vacancies have a profound effect on the magnetic,electronic,and transport properties of transition metal oxides but little is known about their effect on thermal expansion.Herein we report the effect of oxygen defects on the structure formation and thermal expansion properties of the layered perovskite Ca2RuO4(CRO).It is shown that the CRO containing excess oxygen crystallizes in a metallic L-CRO phase without structure transition from 100 K to 500 K and displays a normal thermal expansion behavior,whereas those with oxygen vacancies adopt at room temperature an insulating S-CRO phase and exhibit an enormous negative thermal expansion(NTE)from 100 K to about 360 K,from where they undergo a structure transition to a high temperature metallic L-CRO phase.Compared to the L-CRO containing excess oxygen,the S-CRO structure has increasingly large orthorhombic strain and distinctive in-plane distortion upon cooling.The in-plane distortion of the RuO6 octahedra reaches a maximum across 260 K and then relaxes monotonically,providing a structure evidence for the appearance of an antiferromagnetic orbital ordering in the paramagnetic phase and the A_g phonon mode suppression and phase flip across the same temperature found recently.Both the L-and S-CRO display an antiferromagnetic ordering at about 150-110 K,with ferromagnetic ordering components at lower temperature.The NTE in S-CRO is a result of a complex interplay among the spin,orbital,and lattice.
基金supported by the National Natural Science Foundation of China(Grant No.51874041)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52202012)。
文摘High-speed impact threats and terrorist actions on the battlefield require the development of more effective protective materials and structures,and various protective structure is designed according their energy-absorbing characteristics.In this research,the deformation behavior,microscopic failure modes and energy absorption characteristics of re-entrant hexagonal structure,regular hexagonal structure and regular quadrilateral structure are studied under different strain rates impact.The re-entrant hexagonal structure forms a“X”-shaped deformation zone,the regular quadrilateral and regular hexagonal structure form an“I”-shaped deformation zone.The microscopic appearance of the section is a mixed fracture form.The effects of the topological shape,cell angle,and cell height on the impact behavior of the structure were evaluated.When the cell height is fixed and the cell angle is changed,the energy absorption of the structure increase and then decrease as the relative density increase.The mechanical properties of the structure are optimal when the relative density is about 18.6%and the cell angle is22.5°.When the cell angle is fixed and the cell height is changed,as the relative density increases,the energy absorption of the structure gradually increases.The regular quadrilateral structure and the reentrant hexagonal structure experienced clear strain rate effects under dynamic impact conditions;the regular hexagonal structure did not exhibit obvious strain rate effects.The results presented herein provide a basis for further rational design and selection of shock-resistant protective structures that perform well in high-speed impact environments.
基金financially supported by the National Key R&D Program of China(No.2020YFA0406202)the National Natural Science Foundation of China(Nos.22090042 and 21731001)。
文摘Generally,most materials expand when heated and contract when cooled,whereas negative thermal expansion(NTE)materials are very rare.As a typical NTE material,PbTiO_(3) and related compounds have drawn particular interest in recent years.The discovery of an enhanced NTE system in PbTiO_(3) is beneficial to deepen our understanding of its mechanism and regulate its properties.At present,the method of discriminating an enhanced NTE material based on PbTiO_(3) is not universal.Here,we propose a semi-empirical method through evaluating the average lattice distortion in related systems to estimate the relative coefficient of thermal expansion conveniently.The rationality of the method was verified by the analysis of the 0.6PbTiO_(3)-0.4Bi(Ga_(x)Fe_(1-x))O_(3) system.So far,all PbTiO_(3)-based compounds with enhanced NTE conform well to this method.This method provides the possibility to find more enhanced NTE PbTiO_(3)-based materials.
基金This research is supported by National Key Research and Development Project,Ministry of Science and Technology of the People’s Republic of China(2018YFC1504700).
文摘Utilization of urban underground space has become a vital approach to alleviate the strain on urban land resources,and to optimize the structure and pattem of the city.It is also very important to improve the city environment,build livable city and increase the capacity of the city.Based on the analysis of existing evaluation methods and their problems,a method for evaluating underground space resources based on a negative list of adverse factors affecting underground space development is proposed,to be primarily used in urban planning stages.A list of the adverse factors is established,including limiting factors,constraining factors and influencing factors.Taking Xi'an as an example,using a geographical information system platform,a negative list of adverse factors for the underground space resources in Xi'an City are evaluated,and preventive measures are proposed.Natural resources,exploitable resources,and the potential growth of exploitable underground space resources are evaluated.Underground space assessment in the different development stages of the city,collaborative utilization and safety evaluation for multiple subsurface resources,environmental impact and assessment,as well as evaluation methods based on big data and intelligent optimization algorithms are all discussed with the aim of serving city planning and construction.
基金supported by the National Science Foundation of China (Grant Nos. 11574276 and 11874328)the Key Scientific Research Project of Universities in Henan Province (Grant Nos. 20B140018, 20A510012, and 19A140019)+1 种基金Key Scientific and Technological Project of Henan Province (Grant Nos. 202102210110, 182102210451 and 192102210002)The use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy,Office of Science,Office of Basic Energy Sciences (Grant No. DE-AC02-06CH11357)。
文摘We experimentally investigate effects of W^(6+)occupying the sites of Sc^(3+)in the unit cell of Sc_(2) W_(3) O_(12)(Sc_(8) W_(12) O_(48))on the structure, vibration and thermal expansion. The composition and structure of the doped sample(Sc_(6) W_(2))W_(12) O_(48±δ)(with two W^(6+)occupying two sites of Sc^(3+)in the unit cell of Sc_(8) W_(12) O_(48)) are analyzed and identified by combining the x-ray photoelectron spectroscopy and the synchronous x-ray diffraction with first-principles calculations based on density functional theory. Results show that the crystal with even W^(6+)occupying even Sc^(3+)in the unit cell is stable and maintains the orthorhombic structure at room temperature. The structure of the doped sample is similar to that of Sc_(2) W_(3) O_(12), and with even W occupying even positions of Sc in the unit cell and constituting the WO_(6) octahedra. Raman analyses show that the doped sample possesses stronger W–O bonds and wider Raman linewidths than those of Sc_(2) W_(3) O_(12). The sample doped with W also exhibits intrinsic negative thermal expansion in the measured range of 150 K–650 K.
基金supported by the National Natural Science Foundation of China (Grant Nos. 22071221, 21905252, and 11774078)Natural Science Foundation of Henan Province, China (Grant No. 212300410086)+1 种基金Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (No. 10094100510025)supported by National Supercomputing Center in Zhengzhou
文摘The control of thermal expansion is essential in applications where thermal stability is required from fiber optics coatings,high performance fuel cell cathodes to tooth fillings.Negative thermal expansion(NTE)materials,although rare,are fundamental for this purpose.This work focuses on studying tetracyanidoborate salt CuB(CN)_(4),an interesting cubicstructure material that displays large isotropic NTE.A joint study of synchrotron x-ray diffraction,temperature-dependent Raman spectroscopy,and lattice dynamics calculations was conducted,showing that not only low-frequency optical modes(transverse thermal vibrations of N and C atoms)but also the acoustic modes(the vibrations of Cu atoms as a collective torsion of the neighboring atoms),contribute to NTE.As a result,new insights were gained into the NTE mechanism of CuB(CN)_(4) and related framework materials.
文摘The natural graphite has been used as the anode material for Lithium-Ion batteries, because of its low cost, chemical stability and excellent reversibility for Li+ insertion. However, the slow diffusion rate of lithium ion and poor compatibility with electrolyte solutions make it difficult to use in some conditions. In order to solve these problems, an epoxy-coke/graphite composite has been manufactured. The particle of composite carbonaceous material coated on non-graphitizable (hard) carbon matrix. Due to the disordered structure, the diffusion rate of lithium species in the non-graphitzable carbon is remarkably fast and less anisotropic. The process for preparing a composite carbon powder provides a promising new anode material with superior electrochemical properties for Li-ion batteries. The unique structure of epoxy-coke/graphite composite electrodes results in much better kinetics, also better recharge ability and initial charge/discharge efficiency.
基金supported by the National Natural Science Foundation of China(Grant No.32170485,31501867)the Fundamental Research Funds for the Central Universities(Grant No.2572022BE02)。
文摘Artificial nest boxes are placed to attract birds to nest and breed in a specific location,and they are widely used in avian ecology research and in the attraction of insectivorous birds.There is evidence that artificial nest boxes can adversely affect breeding fitness but no great focus has been placed on this issue by researchers.Therefore,we retrieved 321 research papers regarding artificial nest boxes published from 2003 to 2022 and used the'Biblioshiny'program to extract and integrate keywords;we then summarized the adverse effects of artificial nest boxes on avian breeding success.The studies highlighted many drawbacks and misuses in the designing and placement of nest boxes;furthermore,bird attraction was decreased by their inappropriate selection,thus reducing breeding success.Regarding nest box production,there were shortcomings in the construction material,color,smell,and structural design of the boxes used.Nest boxes were also placed at inappropriate densities,locations,orientations,heights,and managed incorrectly.Finally,we propose suggestions for more efficient and safer artificial nest boxes for future use in avian ecology research and bird conservation.
文摘In previous publications, the author has proposed a model of the electron’s internal structure, wherein a positively-charged negative mass outer shell and a negatively-charged positive mass central core are proposed to resolve the electron’s charge and mass inconsistencies. That model is modified in this document by assuming the electron’s radius is exactly equal to the classical electron radius. The attributes of the internal components of the electron’s structure have been recalculated accordingly. The shape of the electron is also predicted, and found to be slightly aspherical on the order of an oblate ellipsoid. This shape is attributed to centrifugal force and compliant outer shell material. It is interesting to note that all of the electron’s attributes, both external and internal, with the exception of mass and angular moment, are functions of the fine structure constant a, and can be calculated from just three additional constants: electron mass, Planck’s constant, and speed of light. In particular, the ratios of the outer shell charge and mass to the electron charge and mass, respectively, are 3/2a. The ratios of the central core charge and mass to the electron charge and mass, respectively, are 1-(3/2a). Attributes of the electron are compared with those of the muon. Charge and spin angular momentum are the same, while mass, magnetic moment, and radius appear to be related by the fine structure constant. The mass of the electron outer shell is nearly equal to the mass of the muon. The muon internal structure can be modeled exactly the same as for the electron, with exactly the same attribute relationships.
文摘Materials which have negative Poisson’s ratio are entitled as auxetics.Auxetics can be designed as micro-to macro-sized structures.The use of auxetics in civil engineering structures has been studied only to a limited extent.In this study,a re-entrant medium-size auxetic structure is employed as reinforcement of a reinforced concrete beam.The beam is subjected to static and dynamic loading conditions and then investigated by means of maximum vertical displacements of the beam.Besides,normal stresses and shear stresses of the concrete are also assessed.To interpret the performance of the auxetic reinforcement,obtained results are compared with the results of another beam which has non-auxetic reinforcement.The results show that these structures behave with bending compatibility as expected and due to the negative Poisson’s ratio,they led to shear strength increase.Auxetic structures can be employed as reinforcement in a beam.Besides,they can be employed without concrete to increase the shear strength in the case of high shear and impact strength if it is needed.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.72111530199,12231017 and 72293573in part by the Natural Science Foundation of Anhui Province of China under Grant No.2108085J02。
文摘Negative binomial regression is a powerful technique for modeling count data,particularly when dealing with overdispersion.However,estimating the parameters for large-dimensional sparse models is challenging due to the complexity of optimizing the mean and dispersion parameter of the negative binomial distribution.To address this issue,the authors propose a novel approach that employs two iterations of the majorize-minimize(MM)algorithm,one for estimating the dispersion parameter and the other for estimating the mean parameters.These approaches improve the convergence speed and stability of the algorithm.The authors also use group penalty for variable selection,which enhances the accuracy and efficiency of the algorithm.The proposed method provides an explicit solution,simplifies the iteration process,and maintains good stability while ensuring algorithm convergence.Furthermore,the authors apply the proposed algorithm to the zero-inflated model and demonstrate its promising predictive performance on specific data sets.The research has important implications for count data modeling and analysis in various fields,such as data mining,machine learning,and bioinformatics.
基金National Natural Science Foundation of China(Grant Nos.51705158 and 51805174)the Fundamental Research Funds for the Central Universities(Grant Nos.2018MS45 and 2019MS059)。
文摘Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches.
基金financially supported by the National Key R&D Program of China(No.2016YFB0100400)the National Natural Science Foundation of China(Nos.51504032,51604032 and U1664256)。
文摘Silicon materials have attracted wide attention as negative materials due to exceptional gravimetric capacity and abundance. The strategy of using nano-silicon materials as structural units to construct nano/micro-structured silicon-based negative materials for lithium-ion batteries has come into sight in recent years. In order to provide guidance for the material structure design of micro-sized silicon-based negative materials in practical application, in this work, two commercialized nano/micro-structured silicon-based negative materials with a specific capacity of about 650 mAh·g^(-1) were investigated and compared in the aspects of material microstructure, electrochemical performance of half cells, and electrode morphological evolution during cycling. The cycling performance(with capacity retention ratio of about 17% higher after 100 cycles) and electrode structure maintenance of the embedded structure Si/C material are superior to those of core–shell Si/C material. This research can provide guidance on design and application of nano/micro-structured silicon-based negative materials.