Compressional harmonic wave propagation from a cylindrical tunnel or borehole in an intact rock is the basis for investigation of the practical explosion waves in a fractured rock mass. The amplitudes of the radial st...Compressional harmonic wave propagation from a cylindrical tunnel or borehole in an intact rock is the basis for investigation of the practical explosion waves in a fractured rock mass. The amplitudes of the radial stress wave obtained from the universal distinct element code (UDEC) were compared with the analytical solutions for two cases with different conditions. Good agreements between the UDEC results and the analytical solutions have been achieved. It indicates that UDEC can model 2-D dynamic problems at a high degree of accuracy.展开更多
The paper deals with analysis and synthesis of non-harmonic and non-linear sources and appliances, and their interaction with harmonic power supply network. Basic idea is based on knowledge of harmonic spectrum of the...The paper deals with analysis and synthesis of non-harmonic and non-linear sources and appliances, and their interaction with harmonic power supply network. Basic idea is based on knowledge of harmonic spectrum of the sources and/or appliances, respectively. Obviously, one need to know voltage harmonic components of voltage sources (renewable with inverters,...), and current harmonic components generated by non-linear appliances (rectifiers,...). Method of investigation lies on decomposition of real electric circuit into n-harmonic separated equivalent schemes for each harmonic component. Then transient analysis will be done for each scheme separately using "impedance harmonic matrices". The important fact is that each equivalent scheme is now linearized and therefore easily calculated. Finally, the effects of each investigated schemes arc summed into resulting quantities of real non-linear electric circuit.展开更多
A novel control strategy for three-phase shunt active power filter (SAPF) was proposed to improve its performance under non-ideal mains voltages. The approach was inspired by our finding that the classic instantaneous...A novel control strategy for three-phase shunt active power filter (SAPF) was proposed to improve its performance under non-ideal mains voltages. The approach was inspired by our finding that the classic instantaneous reactive power theory based algorithm was unsatisfactory in terms of isolating positive sequence fundamental active components exactly under non-ideal mains voltages. So, a modified ip-iq reference current calculation method was presented. With usage of the new method, not only the positive sequence but also the fundamental active current components can be accurately isolated from load current. A deadbeat closed-loop control model is built in order to eliminate both delay error and tracking error between reference voltages and compensation voltages under unbalanced and distorted mains voltages. Computer simulation results show that the proposed strategy is effective with better tracking ability and lower total harmonic distortion (THD). The strategy is also applied to a 10 kV substation with a local electrolysis manganese plant injecting a large amount of harmonics into the power system, and is proved to be more practical and efficient.展开更多
This paper aims to present a new point of view about the active power measurement, for billing purposes, measured at the PCC (point of common coupling) between the utility and the consumer when harmonic distortions ...This paper aims to present a new point of view about the active power measurement, for billing purposes, measured at the PCC (point of common coupling) between the utility and the consumer when harmonic distortions are involved. Depending on theorigin of it, the active power can result in higher or lower values in comparison to the fundamental component. The consequences are higher costs for the consumer or losses for the electric utility. Using computational simulations and theoretical analysis, these aspects are evaluated and compared.展开更多
With a view to obtaining an exact closed form solution to the Schroedinger equation for a variety of hypercentral potentials, we investigate further application of an ansatz. This method is good enough for many kinds ...With a view to obtaining an exact closed form solution to the Schroedinger equation for a variety of hypercentral potentials, we investigate further application of an ansatz. This method is good enough for many kinds of potentials, but in this article it applies to a type of the hypercentral singular potentials V(x) = ax^2 + bx^-4+ cx^-6 and exponential hypercentral Morse potential U (x) = Uo ( e^-2ax - 2 e^-ax) for three interacting particles. The Morse potential is used for diatomic molecule while this method will be successfully used for many atomic molecules. The three-body potentials are more easily introduced and treated within the hyperspherical harmonic formalism. The internal particle motion is usually described by means of Jacobi relative coordinates p, A, and R, in terms of three particle positions r1, r2, and r3. We discuss some results obtained by using harmonic and anharmonic oscillators, however the hypercentral potential can be easily generalized in order to allow a systematic anaiysis, which admits an exact solution of the wave equation. This method is also applied to some other types of three-body, four-body, ..., interacting potentials.展开更多
A scheme for one-step preparation of atomic GHZ states in two directly coupled cavities via virtual excitations is proposed.In the whole procedure,the information is carried only in two ground states of A-type atoms, ...A scheme for one-step preparation of atomic GHZ states in two directly coupled cavities via virtual excitations is proposed.In the whole procedure,the information is carried only in two ground states of A-type atoms, while the excited states of atoms and cavity modes are virtually excited,leading the system to be insensitive to atomic spontaneous emission and photon loss.展开更多
The rotational frequency tone noise emitted from the automobile turbocharger is called the pulsation noise. The cause of the pulsation noise is not fully understood, but is considered to be due to some manufacturing e...The rotational frequency tone noise emitted from the automobile turbocharger is called the pulsation noise. The cause of the pulsation noise is not fully understood, but is considered to be due to some manufacturing errors, which is called the mistuning. The effects of the mistuning of the impeller blade on the noise field inside the flow passage of the compressor are numerically investigated. Here, the flow passage includes the volute and duct located downstream of the compressor impeller. Our numerical approach is found to successfully capture the wavelength of the pulsation noise at given rotational speeds by the comparison with the experiments. One of the significant findings is that the noise field of the pulsation noise in the duct is highly one-dimensional although the flow fields are highly three-dimensional.展开更多
We theoretically study the high-order harmonic generation (HHG) from a hydrogen atom in an intense few-cycle chirped fundamental laser in combination with an ultraviolet (uv) controlling pulse. The high-order harm...We theoretically study the high-order harmonic generation (HHG) from a hydrogen atom in an intense few-cycle chirped fundamental laser in combination with an ultraviolet (uv) controlling pulse. The high-order harmonic spectrum is calculated by solving the time-dependent Schr6dinger equation using the split-operator method. In our calculation, we present the difference of the high-order harmonic spectrum from one-dimensional (1D) model hydrogen atom and three-dimensional (3D) real hydrogen atom. We found that the plateau of the high-order harmonic generation from the 1D ease and 3D case are all extended effectively to Iv -k 35Up due to the presence of the chirped laser pulse and the HHG supercontinuum spectrum is generated by adding an ultraviolet controlling pulse at a proper time, but the efficiency of the HHC for 3D case is more higher at the near cut-off region than the 1D case. Therefore, the generation of the attosecond pulse by synthesizing the harmonics near cut-off region have some slight differences between 1D and 3D simulations. As a real 3D case study, we show that an isolated 18 as pulse with a bandwidth of 232.5 eV is generated directly by optmizing the combination laser fields.展开更多
By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A la...By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser's operation temperature. The laser's temperature fluctuation can be limited within the range of-0.02—0.02 °C, and the laser's emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection(Lo D) is decided to be 2.952×10^(-5) with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10^(-5) m. Compared with our previously reported NIR CH_4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.展开更多
基金Projects 50278057 supported by National Natural Science Foundation of China and 2002CB412703 supported by 973 Project
文摘Compressional harmonic wave propagation from a cylindrical tunnel or borehole in an intact rock is the basis for investigation of the practical explosion waves in a fractured rock mass. The amplitudes of the radial stress wave obtained from the universal distinct element code (UDEC) were compared with the analytical solutions for two cases with different conditions. Good agreements between the UDEC results and the analytical solutions have been achieved. It indicates that UDEC can model 2-D dynamic problems at a high degree of accuracy.
文摘The paper deals with analysis and synthesis of non-harmonic and non-linear sources and appliances, and their interaction with harmonic power supply network. Basic idea is based on knowledge of harmonic spectrum of the sources and/or appliances, respectively. Obviously, one need to know voltage harmonic components of voltage sources (renewable with inverters,...), and current harmonic components generated by non-linear appliances (rectifiers,...). Method of investigation lies on decomposition of real electric circuit into n-harmonic separated equivalent schemes for each harmonic component. Then transient analysis will be done for each scheme separately using "impedance harmonic matrices". The important fact is that each equivalent scheme is now linearized and therefore easily calculated. Finally, the effects of each investigated schemes arc summed into resulting quantities of real non-linear electric circuit.
基金Project(JC200903180555A) supported by Shenzhen City Science and Technology Plan, China
文摘A novel control strategy for three-phase shunt active power filter (SAPF) was proposed to improve its performance under non-ideal mains voltages. The approach was inspired by our finding that the classic instantaneous reactive power theory based algorithm was unsatisfactory in terms of isolating positive sequence fundamental active components exactly under non-ideal mains voltages. So, a modified ip-iq reference current calculation method was presented. With usage of the new method, not only the positive sequence but also the fundamental active current components can be accurately isolated from load current. A deadbeat closed-loop control model is built in order to eliminate both delay error and tracking error between reference voltages and compensation voltages under unbalanced and distorted mains voltages. Computer simulation results show that the proposed strategy is effective with better tracking ability and lower total harmonic distortion (THD). The strategy is also applied to a 10 kV substation with a local electrolysis manganese plant injecting a large amount of harmonics into the power system, and is proved to be more practical and efficient.
文摘This paper aims to present a new point of view about the active power measurement, for billing purposes, measured at the PCC (point of common coupling) between the utility and the consumer when harmonic distortions are involved. Depending on theorigin of it, the active power can result in higher or lower values in comparison to the fundamental component. The consequences are higher costs for the consumer or losses for the electric utility. Using computational simulations and theoretical analysis, these aspects are evaluated and compared.
文摘With a view to obtaining an exact closed form solution to the Schroedinger equation for a variety of hypercentral potentials, we investigate further application of an ansatz. This method is good enough for many kinds of potentials, but in this article it applies to a type of the hypercentral singular potentials V(x) = ax^2 + bx^-4+ cx^-6 and exponential hypercentral Morse potential U (x) = Uo ( e^-2ax - 2 e^-ax) for three interacting particles. The Morse potential is used for diatomic molecule while this method will be successfully used for many atomic molecules. The three-body potentials are more easily introduced and treated within the hyperspherical harmonic formalism. The internal particle motion is usually described by means of Jacobi relative coordinates p, A, and R, in terms of three particle positions r1, r2, and r3. We discuss some results obtained by using harmonic and anharmonic oscillators, however the hypercentral potential can be easily generalized in order to allow a systematic anaiysis, which admits an exact solution of the wave equation. This method is also applied to some other types of three-body, four-body, ..., interacting potentials.
基金Supported in part by the Natural Science Foundation of China under Grant Nos.10974125,60821004,60878059in part by the Educational Committee of Fujian Province under Grant No.JA09041in part by Fujian Normal University under Grant No.2008100220
文摘A scheme for one-step preparation of atomic GHZ states in two directly coupled cavities via virtual excitations is proposed.In the whole procedure,the information is carried only in two ground states of A-type atoms, while the excited states of atoms and cavity modes are virtually excited,leading the system to be insensitive to atomic spontaneous emission and photon loss.
文摘The rotational frequency tone noise emitted from the automobile turbocharger is called the pulsation noise. The cause of the pulsation noise is not fully understood, but is considered to be due to some manufacturing errors, which is called the mistuning. The effects of the mistuning of the impeller blade on the noise field inside the flow passage of the compressor are numerically investigated. Here, the flow passage includes the volute and duct located downstream of the compressor impeller. Our numerical approach is found to successfully capture the wavelength of the pulsation noise at given rotational speeds by the comparison with the experiments. One of the significant findings is that the noise field of the pulsation noise in the duct is highly one-dimensional although the flow fields are highly three-dimensional.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11044007 and 11047016the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20096203110001+1 种基金the Young Teachers Foundation of Northwest Normal University under Grant No. NWNU-LKQN-10-5Foundation of North west Normal University under Grant No. NWNU-KJCXGC-03-62
文摘We theoretically study the high-order harmonic generation (HHG) from a hydrogen atom in an intense few-cycle chirped fundamental laser in combination with an ultraviolet (uv) controlling pulse. The high-order harmonic spectrum is calculated by solving the time-dependent Schr6dinger equation using the split-operator method. In our calculation, we present the difference of the high-order harmonic spectrum from one-dimensional (1D) model hydrogen atom and three-dimensional (3D) real hydrogen atom. We found that the plateau of the high-order harmonic generation from the 1D ease and 3D case are all extended effectively to Iv -k 35Up due to the presence of the chirped laser pulse and the HHG supercontinuum spectrum is generated by adding an ultraviolet controlling pulse at a proper time, but the efficiency of the HHC for 3D case is more higher at the near cut-off region than the 1D case. Therefore, the generation of the attosecond pulse by synthesizing the harmonics near cut-off region have some slight differences between 1D and 3D simulations. As a real 3D case study, we show that an isolated 18 as pulse with a bandwidth of 232.5 eV is generated directly by optmizing the combination laser fields.
基金supported by the National Key Technology R&D Program of China(Nos.2013BAK06B04 and 2014BAD08B03)the National Natural Science Foundation of China(Nos.61307124 and 11404129)+3 种基金the Science and Technology Department of Jilin Province of China(Nos.20120707 and 20140307014SF)the Changchun Municipal Science and Technology Bureau(Nos.11GH01 and 14KG022)the State Key Laboratory on Integrated OptoelectronicsJilin University(No.IOSKL2012ZZ12)
文摘By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser's operation temperature. The laser's temperature fluctuation can be limited within the range of-0.02—0.02 °C, and the laser's emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection(Lo D) is decided to be 2.952×10^(-5) with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10^(-5) m. Compared with our previously reported NIR CH_4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.