The harmonic oscillator with time? dependent frequency and driving is studied by means of a new, simple method. By means of simple transformations of variables, the time dependent Schrdinger equation is first tr...The harmonic oscillator with time? dependent frequency and driving is studied by means of a new, simple method. By means of simple transformations of variables, the time dependent Schrdinger equation is first transformed into the time independent one. And then exact wave function is found in terms of solutions of the classical equation of motion of the oscillator.展开更多
A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equati...A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.展开更多
In this paper, by using harmonic-oscillator wave functions of different interaction models, i.e. OPE (onepion-exchange model), OPsE (only pseudoscalar meson exchange model), the extended GBE (Goldstone-boson-exchange ...In this paper, by using harmonic-oscillator wave functions of different interaction models, i.e. OPE (onepion-exchange model), OPsE (only pseudoscalar meson exchange model), the extended GBE (Goldstone-boson-exchange model including vector and scalar mesons), and OGE (one-gluon-exchange model), we calculate and compare the strong decays of negative parity N* resonances under 2 GeV. We find that the conventional mixing angles are correct, and GBE and OGE are obviously superior to OPE and OPsE.展开更多
We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt d...We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt decomposition of hm,n is derived. It also turns out that hm,n can be generated by windowed Fourier transform of the single-variable Hermite functions. As an application, the wave function of the two-variable Hermite polynomial state S(γ)Hm,n (μa1^+, μa2^+│00〉, which is the minimum uncertainty state for sum squeezing, in ( η│representation is calculated.展开更多
In cylindrical coordinate, exact wave functions of the two-dimensional time-dependent harmonic oscillator in a time-dependent magnetic field are derived by using the trial function method. Meanwhile, the exact classic...In cylindrical coordinate, exact wave functions of the two-dimensional time-dependent harmonic oscillator in a time-dependent magnetic field are derived by using the trial function method. Meanwhile, the exact classical solution as well as the classicalphase is obtained too. Through the Heisenberg correspondence principle, the quantum solution and the classical solution are connected together.展开更多
The invariant, propagator, and wavefunction for a variable frequency harmonic oscillator in an electromagnetic field are obtained by making a specific coordinate transformation and by using the method of phase space p...The invariant, propagator, and wavefunction for a variable frequency harmonic oscillator in an electromagnetic field are obtained by making a specific coordinate transformation and by using the method of phase space path integral method. The probability amplitudes for a dissipative harmonic oscillator in the time varying electric field are obtained.展开更多
We employ the invariant eigen-operator (lEO) method to find the invariant eigen-operators of N-body singular oscillators' Hamiltonians and then derive their energy gaps. The Hamiltonians of parametric amplifiers wi...We employ the invariant eigen-operator (lEO) method to find the invariant eigen-operators of N-body singular oscillators' Hamiltonians and then derive their energy gaps. The Hamiltonians of parametric amplifiers with singular potential are also discussed in this way.展开更多
The exact expressions of Gaussian-perturbation matrix elements in one- and two-mode Fock states are derived by virtue of the technique of integration within an ordered product of operators and the entangled state repr...The exact expressions of Gaussian-perturbation matrix elements in one- and two-mode Fock states are derived by virtue of the technique of integration within an ordered product of operators and the entangled state representation. It turns out that the matrix elements are just related to Gegenbauer polynomial and Hypergeometric function respectively. The 1st- and 2nd-order corrections to the energy levels and the 1st-order correction to wave functions of harmonic oscillator are deduced.展开更多
In this paper,the Virial Theorem based on a class of quantum nonlinear harmonic oscillators is presented.This relationship has to do with parameter λ and ■/■λ,where the λ is a real number.When λ = 0,the nonlinea...In this paper,the Virial Theorem based on a class of quantum nonlinear harmonic oscillators is presented.This relationship has to do with parameter λ and ■/■λ,where the λ is a real number.When λ = 0,the nonlinear harmonic oscillator naturally reduces to the usual quantum linear harmonic oscillator,and the Virial Theorem also reduces to the usual Virial Theorem.展开更多
基金National Natural Science Foundation (K19972 0 11)
文摘The harmonic oscillator with time? dependent frequency and driving is studied by means of a new, simple method. By means of simple transformations of variables, the time dependent Schrdinger equation is first transformed into the time independent one. And then exact wave function is found in terms of solutions of the classical equation of motion of the oscillator.
基金Supported by the National Natural Science Foundation of China under Grant No. 60806047the Basic Research of Chongqing Education Committee under Grant No. KJ060813
文摘A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.
文摘In this paper, by using harmonic-oscillator wave functions of different interaction models, i.e. OPE (onepion-exchange model), OPsE (only pseudoscalar meson exchange model), the extended GBE (Goldstone-boson-exchange model including vector and scalar mesons), and OGE (one-gluon-exchange model), we calculate and compare the strong decays of negative parity N* resonances under 2 GeV. We find that the conventional mixing angles are correct, and GBE and OGE are obviously superior to OPE and OPsE.
文摘We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt decomposition of hm,n is derived. It also turns out that hm,n can be generated by windowed Fourier transform of the single-variable Hermite functions. As an application, the wave function of the two-variable Hermite polynomial state S(γ)Hm,n (μa1^+, μa2^+│00〉, which is the minimum uncertainty state for sum squeezing, in ( η│representation is calculated.
文摘In cylindrical coordinate, exact wave functions of the two-dimensional time-dependent harmonic oscillator in a time-dependent magnetic field are derived by using the trial function method. Meanwhile, the exact classical solution as well as the classicalphase is obtained too. Through the Heisenberg correspondence principle, the quantum solution and the classical solution are connected together.
文摘The invariant, propagator, and wavefunction for a variable frequency harmonic oscillator in an electromagnetic field are obtained by making a specific coordinate transformation and by using the method of phase space path integral method. The probability amplitudes for a dissipative harmonic oscillator in the time varying electric field are obtained.
基金The project supported by the Specialized Research Fund for the Doctorial Program of Higher Education of China
文摘We employ the invariant eigen-operator (lEO) method to find the invariant eigen-operators of N-body singular oscillators' Hamiltonians and then derive their energy gaps. The Hamiltonians of parametric amplifiers with singular potential are also discussed in this way.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10475056 and 10647133 and the Research Foundation of the Education Department of Jiangxi Province under Grant No. [2007]22
文摘The exact expressions of Gaussian-perturbation matrix elements in one- and two-mode Fock states are derived by virtue of the technique of integration within an ordered product of operators and the entangled state representation. It turns out that the matrix elements are just related to Gegenbauer polynomial and Hypergeometric function respectively. The 1st- and 2nd-order corrections to the energy levels and the 1st-order correction to wave functions of harmonic oscillator are deduced.
基金Supported in part by National Natural Science Foundation of China under Grant No. 11171164
文摘In this paper,the Virial Theorem based on a class of quantum nonlinear harmonic oscillators is presented.This relationship has to do with parameter λ and ■/■λ,where the λ is a real number.When λ = 0,the nonlinear harmonic oscillator naturally reduces to the usual quantum linear harmonic oscillator,and the Virial Theorem also reduces to the usual Virial Theorem.