In order to describe pavement roughness more intuitively and effectively, a method of pavement roughness simulation, i.e., the stochastic sinusoidal wave, is introduced. The method is based on the primary idea that pa...In order to describe pavement roughness more intuitively and effectively, a method of pavement roughness simulation, i.e., the stochastic sinusoidal wave, is introduced. The method is based on the primary idea that pavement roughness is denoted as the sum of numerous sines or cosines with stochastic phases, and uses the discrete spectrum to approach the target stochastic process. It is a discrete numerical method used to simulate pavement roughness. According to a given pavement power spectral density (PSD) coefficient, under the condition that the character of displacement frequency based on the time domain model is in accordance with the given pavement surface spectrum, the pavement roughness is optimized to stochastic equivalent vibrations by computer simulation, and the curves that describe pavement roughness under each grade are obtained. The results show that the stochastic sinusoidal wave is suitable for simulation of measured pavement surface spectra based on the time domain model. The method of the stochastic sinusoidal wave is important to the research on vehicle ride comfort due to its rigorous mathematical derivation, extensive application range and intuitive simulation curve. Finally, a roughness index defined as the nominal roughness index (NRI) is introduced, and it has correlation with the PSD coefficient.展开更多
Nowadays,the internal structure of spacecraft has been increasingly complex.As its“lifeline”,cables require extensive manpower and resources for manual testing,and it is challenging to quickly and accurately locate ...Nowadays,the internal structure of spacecraft has been increasingly complex.As its“lifeline”,cables require extensive manpower and resources for manual testing,and it is challenging to quickly and accurately locate quality problems and find solutions.To address this problem,a knowledge graph based method is employed to extract multi-source heterogeneous cable knowledge entities.The method utilizes the bidirectional encoder representations from transformers(BERT)network to embed word vectors into the input text,then extracts the contextual features of the input sequence through the bidirectional long short-term memory(BiLSTM)network,and finally inputs them into the conditional random field(CRF)network to predict entity categories.Simultaneously,by using the entities extracted by this model as the data layer,a knowledge graph based method has been constructed.Compared to other traditional extraction methods,the entity extraction method used in this study demonstrates significant improvements in metrics such as precision,recall and an F1 score.Ultimately,employing cable test data from a particular aerospace precision machining company,the study has constructed the knowledge graph based method in the field to achieve visualized queries and the traceability and localization of quality problems.展开更多
文摘In order to describe pavement roughness more intuitively and effectively, a method of pavement roughness simulation, i.e., the stochastic sinusoidal wave, is introduced. The method is based on the primary idea that pavement roughness is denoted as the sum of numerous sines or cosines with stochastic phases, and uses the discrete spectrum to approach the target stochastic process. It is a discrete numerical method used to simulate pavement roughness. According to a given pavement power spectral density (PSD) coefficient, under the condition that the character of displacement frequency based on the time domain model is in accordance with the given pavement surface spectrum, the pavement roughness is optimized to stochastic equivalent vibrations by computer simulation, and the curves that describe pavement roughness under each grade are obtained. The results show that the stochastic sinusoidal wave is suitable for simulation of measured pavement surface spectra based on the time domain model. The method of the stochastic sinusoidal wave is important to the research on vehicle ride comfort due to its rigorous mathematical derivation, extensive application range and intuitive simulation curve. Finally, a roughness index defined as the nominal roughness index (NRI) is introduced, and it has correlation with the PSD coefficient.
文摘Nowadays,the internal structure of spacecraft has been increasingly complex.As its“lifeline”,cables require extensive manpower and resources for manual testing,and it is challenging to quickly and accurately locate quality problems and find solutions.To address this problem,a knowledge graph based method is employed to extract multi-source heterogeneous cable knowledge entities.The method utilizes the bidirectional encoder representations from transformers(BERT)network to embed word vectors into the input text,then extracts the contextual features of the input sequence through the bidirectional long short-term memory(BiLSTM)network,and finally inputs them into the conditional random field(CRF)network to predict entity categories.Simultaneously,by using the entities extracted by this model as the data layer,a knowledge graph based method has been constructed.Compared to other traditional extraction methods,the entity extraction method used in this study demonstrates significant improvements in metrics such as precision,recall and an F1 score.Ultimately,employing cable test data from a particular aerospace precision machining company,the study has constructed the knowledge graph based method in the field to achieve visualized queries and the traceability and localization of quality problems.