In recent decades,materials science has experienced rapid development and posed increasingly high requirements for the characterizations of structures,properties,and performances.Herein,we report on our recent establi...In recent decades,materials science has experienced rapid development and posed increasingly high requirements for the characterizations of structures,properties,and performances.Herein,we report on our recent establishment of a multi-domain(energy,space,time)highresolution platform for integrated spectroscopy and microscopy characterizations,offering an unprecedented way to analyze materials in terms of spectral(energy)and spatial mapping as well as temporal evolution.We present several proof-of-principle results collected on this platform,including in-situ Raman imaging(high-resolution Raman,polarization Raman,low-wavenumber Raman),time-resolved photoluminescence imaging,and photoelectrical performance imaging.It can be envisioned that our newly established platform would be very powerful and effective in the multi-domain high-resolution characterizations of various materials of photoelectrochemical importance in the near future.展开更多
Optical microscopy, and scanning electron microscopy in conjunction with energy dispersed X-ray spectrometry (SEM-EDX), have been used to study the minerals and the concentrations of 12 trace elements in the No.14 c...Optical microscopy, and scanning electron microscopy in conjunction with energy dispersed X-ray spectrometry (SEM-EDX), have been used to study the minerals and the concentrations of 12 trace elements in the No.14 coal from the Huolinhe mine, Inner Mongolia China. The distribution, affinity and removability of the trace elements were studied by float-sink experiments and petrological methods. A high mineral content, dominated by clay minerals, was found in the No.14 coal from the Huolinhe mine. The concentrations of As, Sb and Hg are relatively high compared to the average values for Chinese coals. As, Cr, Hg, Li, Mn, Pb are mainly associated with the minerals while Cd, Co, Ni, Sb, and Se are evenly distributed between the minerals and the organic matter. Be and Ba are mainly distributed in the minerals with a minor proportion in the organic matter. Most elements have a low organic affinity, although Sb, Se, Co, Cd, Ni are closely integrated with the organic matter. High theoretical removabilities are indicated for most trace elements. So it may be possible to lower the concentrations of trace elements during coal preparation.展开更多
In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy...In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 ~tA. And the inclusion of Cu in NiP alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.展开更多
The elemental composition,heat expansibility and breaking characteristics of limestone have been investigated with the use of an energy spectrum analyzer,a SEM,an optical microscope and an experimental heat swelling p...The elemental composition,heat expansibility and breaking characteristics of limestone have been investigated with the use of an energy spectrum analyzer,a SEM,an optical microscope and an experimental heat swelling power system.The results show that 1) the heat expansibility of limestone has anisotropic properties,and 2) the heat expansion rate in the direction perpendicular to stratification is eight times greater than the rate parallel to stratification.The changes in heat expansibility as a function of heating temperature is essentially coincident with that of swelling and breaking of mineral particles and the appearance of cracks,indicating that the reason for causing the heat expansion of rock are the structural changes of limestone caused by thermal stress,crystal transformation and mineral decomposition.The apparent destruction of limestone under high temperatures is largely characterized by rock stratification breaks.When the limestone is heated beyond a certain limit,the rock destroys into crazed cracks.展开更多
The corrosion behavior of tinplate cans containing coffee was investigated using novel electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) sensors.The contents of iron and tin dissolved in cans w...The corrosion behavior of tinplate cans containing coffee was investigated using novel electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) sensors.The contents of iron and tin dissolved in cans were detected by inductively coupled plasma mass spectrometer(ICP-MS),and the morphology of corroded surface was observed by optical microscopy and scanning probe microscopy(SPM).The results reveal that the coating resistance,charge transfer resistance and noise resistance decrease with the prolongation of storage time.The iron and tin contents in cans increase with the storage time,while the bump height of coating surface increases from 30 nm to 80 nm during the corrosion of twelve months.The existence of deformation would enhance the corrosion process of tinplate cans.Finally,the corrosion mechanism of tinplate cans in coffee was proposed.展开更多
The corrosion process of tinplate in deaerated functional beverage was investigated by using electrochemical impedance spectroscopy (EIS) combined with scanning electron microscopy (SEM) and energy dispersive spectros...The corrosion process of tinplate in deaerated functional beverage was investigated by using electrochemical impedance spectroscopy (EIS) combined with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The results reveal that the uncoated tinplate shows a poor corrosion resistance and the corrosion type is detinning. During the initial stage of immersion, EIS spectrum consisted of two capacitance arcs with obvious time-constant dispersion effect, which was attributed to the two-dimensional and three-dimensional inhomogeneous distribution of the electrode surface. With the increase of immersion time, the capacitance arc of high frequency shrunk and degenerated, due to the corrosion of tin coating. The pore resistance of tin coating and the charger transfer resistance of substrate, which are determined from the electrochemical equivalent circuit, can be used as the indicators of tinplate corrosion process. The decrease of the pore resistance of tin coating indicates that the corrosion degree of tin layer becomes more severe, whereas the decrease of the charger transfer resistance of substrate implies that the corrosion degree of steel substrate also becomes more severe as the immersion time prolongs.展开更多
Membrane distillation(MD) has not been widely studied in the concentrate of phenolic rich solution in comparison to osmotic distillation. In this work, the potential of MD to reduce solvent in the polyphenol rich prop...Membrane distillation(MD) has not been widely studied in the concentrate of phenolic rich solution in comparison to osmotic distillation. In this work, the potential of MD to reduce solvent in the polyphenol rich propolis extract was further investigated. Polyvinylidene fluoride(PVDF) membranes were engineered with the smaller pore size for the less hydrophobic surface in order to avoid wetting, allowing only the solvent vapor to be transferred from the warm feed into the cold permeate. All the membranes exhibited more than 95% rejection of phenolic and flavonoid compounds. Although the hydrophilic membranes exhibited less fouling, they displayed a lower flux than the hydrophobic membrane due to the hindrance in the wetted pores. The hydrophobic membrane was seriously fouled by the phenolic acid as shown in the Fourier transform infrared spectroscopy spectrum. Pore plugging occurred on these hydrophobic membranes as confirmed in the scanning electron microscope images.展开更多
TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning ...TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).Water contact angles on titanium oxide film surface were measured under both dark and sunlight illumination conditions.Corrosion tests were carried out in seawater under different illumination conditions by electrochemistry impedance spectrum (EIS) and polarization curves.The result showed that the TiO2 film prepared by the anodic oxidation method was anatase with a uniform structure and without obvious pores or cracks on its surface.The average water contact angle of the film was 116.4? in dark, in contrast to an angle of 42.7? under the UV illumination for 2 hours, which demonstrates good hydrophobic property.The anti-corrosion behavior of the TiO2 film was declining with the extended immersion time.Under dark conditions, however, the hydrophobic TiO2 film retarded the water infiltrating into the substrate.The impedance changed slowly and the corrosion current density was 2 orders of magnitude lower than that with the film illuminated by sunlight.All of those mentioned above indicate that the TiO2 film possesses much better performance under dark condition, and it can be applied as an engineering material under dark seawater environment.展开更多
The corrosion behavior of 907 steel under thin electrolyte layer(TEL) has been investigated by means of cathodic polarization curve measurement, electrochemical impedance spectroscopy(EIS) and scanning electron micros...The corrosion behavior of 907 steel under thin electrolyte layer(TEL) has been investigated by means of cathodic polarization curve measurement, electrochemical impedance spectroscopy(EIS) and scanning electron microscopy(SEM). The results show that the cathodic diffusion current density presents the variation trend of initial increase and subsequent decrease with the decrease of TEL thickness, and the maximum deposits at 58 μm. The cotangent-hyperbolic impedance(O) is rationally first introduced to study the diffusion process of the reactants through the corrosion products layer with many permeable holes. The initial corrosion rate of 907 steel under different TEL thickness increases with the decrease of TEL thickness except that of 104 μm,whereas the corrosion rate after long time corrosion can be ranked as 104 μm﹥402 μm﹥198 μm﹥301 μm﹥bulk solution.展开更多
The surface morphology of alloy layer of tinplate was studied by means of scanning electron microscopy. By using the layer on layer debonding technology of glow discharge spectrum, the contents of C and O at the bound...The surface morphology of alloy layer of tinplate was studied by means of scanning electron microscopy. By using the layer on layer debonding technology of glow discharge spectrum, the contents of C and O at the boundary of alloy layer and black plate were analyzed. And the corrosion characteristic of cavity of tinplate alloy layer was studied on-line and in-situ by means of electrochemical atomic force microscope. The corrosion depth of cavity of alloy layer in-situ after different corrosion time was measured. The results show that the cavity of alloy layer is a critical factor causing rapid decline of corrosion resistance of tinplate, and the formation of cavity of alloy layer is due to incorrect pretreatment of black plate before electrotinning. The cavity of alloy layer is the internal factor causing pitting corrosion of tinplate when the tinplate is applied to food packaging material. And the dynamic equation of pitting corrosion generated in the cavity of alloy layer conforms to logarithm law.展开更多
The stability of ionic liquid additive 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4) during zinc electrowinning from acidic sulfate solution was investigated by cyclic voltammetry, electrochemical impeda...The stability of ionic liquid additive 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4) during zinc electrowinning from acidic sulfate solution was investigated by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. Compared with the traditional industrial additives, gelatine and gum arabic, [BMIM]HSO4 has more excellent chemical and thermal stabilities. The inhibition effects of gelatine and gum arabic on the zinc electrocrystallization are observed to markedly weaken due to their part degradation after 12 h longtime successive electrolysis and high temperature (90 ℃) treatments. In contrast, the activity of [BMIM]HSO4 is practically unaffected after 24 h longtime successive electrolysis and high temperature treatments. These results are corroborated with the corresponding morphological analysis of the cathodic deposits.展开更多
High dispersed carbon black was applied for LiFePO4 cathodes as conductive agent.Nano-conductive carbon agent was pre-dispersed with poly acrylic acid(PAA) as dispersant in organic N-methyl-pyrrolidone(NMP) solvent sy...High dispersed carbon black was applied for LiFePO4 cathodes as conductive agent.Nano-conductive carbon agent was pre-dispersed with poly acrylic acid(PAA) as dispersant in organic N-methyl-pyrrolidone(NMP) solvent system.The dispersion property of nano-conductive carbon agent was evaluated using particle size distribution measurements,scanning electron microscopy(SEM) and transmission electron microscope(TEM).LiFePO4 cathode with as-received nano-conductive carbon agent(SP) and LiFePO4 cathode with pre-dispersed nano-conductive carbon agent(SP-PAA) were examined by scanning electron microscopy(SEM),cyclic voltammetry(CV),electrochemical impendence spectroscopy(EIS) and charge/discharge cycling performance.Results show that the dispersion property of carbon black is improved by using PAA as the dispersant.The LiFePO4 cathodes with SP-PAA exhibit improved rate behaviors(4C,135.1 mAh/g) and cycle performance(95%,200 cycles) compared to LiFePO4 cathodes with SP(4C,103.9 mAh/g and 83%,200 cycles).Because pre-dispersed carbon black(SP-PAA) is dispersed homogeneously in the dried composite electrode to form a more uniform conductive network between the active material particles,electrochemical performances of the LiFePO4 cathodes are improved.展开更多
The potential of di-(m-Formylphenol)-1,2-cyclohexandiimine as an environmentally friendly corrosion inhibitor for steel was investigated in 1 mol/L HCl using potentiodynamic polarization, electrochemical impedance spe...The potential of di-(m-Formylphenol)-1,2-cyclohexandiimine as an environmentally friendly corrosion inhibitor for steel was investigated in 1 mol/L HCl using potentiodynamic polarization, electrochemical impedance spectroscopy and chronoamperometry measurements. All electrochemical measurements suggest that this compound is an excellent corrosion inhibitor for mild steel and the inhibition efficiency increases with the increase in inhibitor concentration. The effect of temperature on the corrosion behavior of mild steel with the addition of the Schiff base was studied in the temperature range from 25 °C to 65 °C. It is found that the adsorption of this inhibitor follows the Langmuir adsorption isotherms. The value of activation energy and the thermodynamic parameters such as ΔHads, ΔSads, Kads and ΔGads were calculated by the corrosion currents at different temperatures using the adsorption isotherm. The morphology of mild steel surface in the absence and presence of inhibitor was examined by scanning electron microscopy(SEM) images.展开更多
Four types of common seaweeds(Laminaria japonica,Undaria pinnatifida,Porphyra haitanensis,and Gracilaria lemaneiformis) were examined to remove Cr(Ⅵ) ions from aqueous solution.The experimental parameters that affect...Four types of common seaweeds(Laminaria japonica,Undaria pinnatifida,Porphyra haitanensis,and Gracilaria lemaneiformis) were examined to remove Cr(Ⅵ) ions from aqueous solution.The experimental parameters that affected the biosorption process including pH,biomass dosage,contact time and temperature were investigated via batch experiments.The surface characteristics of seaweeds before and after Cr(Ⅵ) adsorption were studied with scanning electron microscopy and Fourier transform infrared spectroscopy.The results show that an initial solution with the pH of 1.0 is most favorable for Cr(Ⅵ) adsorption.Rapid adsorption is observed in the initial stage and adsorption equilibrium state is reached within 1 h.The adsorption efficiency by Porphyra haitanensis is the maximum among four types of seaweed powders,followed by Laminaria japonica and Undaria pinnatifida with biosorption efficiency up to 90%.The removal rate of Gracilaria lemaneiformis is less than 60%.The kinetic data obtained using the seaweeds are found to follow pseudo-second order kinetic model.Experimental sorption data adequately correlate with the Langmuir model.FTIR indicates that amino and carboxyl groups play an important role in the process of Cr(Ⅵ) adsorption and a large percentage of Cr(Ⅵ) ions are reduced by reductive groups on the surface of seaweeds.展开更多
基金supported by the National Key Research and Development Program of China(No.2016YFA0200602,No.2017YFA0303500,and No.2018YFA0208702)the National Natural Science Foundation of China(No.21573211,No.21633007,No.21803067,and No.91950207)+1 种基金the Anhui Initiative in Quantum Information Technologies(AHY090200)the USTC-NSRL Joint Funds(UN2018LHJJ).
文摘In recent decades,materials science has experienced rapid development and posed increasingly high requirements for the characterizations of structures,properties,and performances.Herein,we report on our recent establishment of a multi-domain(energy,space,time)highresolution platform for integrated spectroscopy and microscopy characterizations,offering an unprecedented way to analyze materials in terms of spectral(energy)and spatial mapping as well as temporal evolution.We present several proof-of-principle results collected on this platform,including in-situ Raman imaging(high-resolution Raman,polarization Raman,low-wavenumber Raman),time-resolved photoluminescence imaging,and photoelectrical performance imaging.It can be envisioned that our newly established platform would be very powerful and effective in the multi-domain high-resolution characterizations of various materials of photoelectrochemical importance in the near future.
文摘Optical microscopy, and scanning electron microscopy in conjunction with energy dispersed X-ray spectrometry (SEM-EDX), have been used to study the minerals and the concentrations of 12 trace elements in the No.14 coal from the Huolinhe mine, Inner Mongolia China. The distribution, affinity and removability of the trace elements were studied by float-sink experiments and petrological methods. A high mineral content, dominated by clay minerals, was found in the No.14 coal from the Huolinhe mine. The concentrations of As, Sb and Hg are relatively high compared to the average values for Chinese coals. As, Cr, Hg, Li, Mn, Pb are mainly associated with the minerals while Cd, Co, Ni, Sb, and Se are evenly distributed between the minerals and the organic matter. Be and Ba are mainly distributed in the minerals with a minor proportion in the organic matter. Most elements have a low organic affinity, although Sb, Se, Co, Cd, Ni are closely integrated with the organic matter. High theoretical removabilities are indicated for most trace elements. So it may be possible to lower the concentrations of trace elements during coal preparation.
基金Project(K1403375-11)supported by Science and Technology Planning Project of Changsha,ChinaProject(2015D009)supported by the Planned Science and Technology Project of Qingyuan City,ChinaProject(2015B04)supported by the Planned Science and Technology Project of Qingcheng District,Qingyuan City,China
文摘In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 ~tA. And the inclusion of Cu in NiP alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.
基金Project 50574037 supported by the National Natural Science Foundation of China
文摘The elemental composition,heat expansibility and breaking characteristics of limestone have been investigated with the use of an energy spectrum analyzer,a SEM,an optical microscope and an experimental heat swelling power system.The results show that 1) the heat expansibility of limestone has anisotropic properties,and 2) the heat expansion rate in the direction perpendicular to stratification is eight times greater than the rate parallel to stratification.The changes in heat expansibility as a function of heating temperature is essentially coincident with that of swelling and breaking of mineral particles and the appearance of cracks,indicating that the reason for causing the heat expansion of rock are the structural changes of limestone caused by thermal stress,crystal transformation and mineral decomposition.The apparent destruction of limestone under high temperatures is largely characterized by rock stratification breaks.When the limestone is heated beyond a certain limit,the rock destroys into crazed cracks.
基金Project(2011CB610500)supported by the National Key Basic Research Program of ChinaProject(13JCZDJC29500)supported by the Natural Science Foundation of Tianjin Municipality,ChinaProject(20130032110029)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘The corrosion behavior of tinplate cans containing coffee was investigated using novel electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) sensors.The contents of iron and tin dissolved in cans were detected by inductively coupled plasma mass spectrometer(ICP-MS),and the morphology of corroded surface was observed by optical microscopy and scanning probe microscopy(SPM).The results reveal that the coating resistance,charge transfer resistance and noise resistance decrease with the prolongation of storage time.The iron and tin contents in cans increase with the storage time,while the bump height of coating surface increases from 30 nm to 80 nm during the corrosion of twelve months.The existence of deformation would enhance the corrosion process of tinplate cans.Finally,the corrosion mechanism of tinplate cans in coffee was proposed.
基金Supported by National Key Basic Research Program of China ("973" Program, No. 2011CB610505)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120032110029)Key Project of Tianjin Natural Science Foundation (No. 13JCZDJC29500)
文摘The corrosion process of tinplate in deaerated functional beverage was investigated by using electrochemical impedance spectroscopy (EIS) combined with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The results reveal that the uncoated tinplate shows a poor corrosion resistance and the corrosion type is detinning. During the initial stage of immersion, EIS spectrum consisted of two capacitance arcs with obvious time-constant dispersion effect, which was attributed to the two-dimensional and three-dimensional inhomogeneous distribution of the electrode surface. With the increase of immersion time, the capacitance arc of high frequency shrunk and degenerated, due to the corrosion of tin coating. The pore resistance of tin coating and the charger transfer resistance of substrate, which are determined from the electrochemical equivalent circuit, can be used as the indicators of tinplate corrosion process. The decrease of the pore resistance of tin coating indicates that the corrosion degree of tin layer becomes more severe, whereas the decrease of the charger transfer resistance of substrate implies that the corrosion degree of steel substrate also becomes more severe as the immersion time prolongs.
基金the Universiti Sains Malaysia for funding the research through Membrane Science and Technology Cluster
文摘Membrane distillation(MD) has not been widely studied in the concentrate of phenolic rich solution in comparison to osmotic distillation. In this work, the potential of MD to reduce solvent in the polyphenol rich propolis extract was further investigated. Polyvinylidene fluoride(PVDF) membranes were engineered with the smaller pore size for the less hydrophobic surface in order to avoid wetting, allowing only the solvent vapor to be transferred from the warm feed into the cold permeate. All the membranes exhibited more than 95% rejection of phenolic and flavonoid compounds. Although the hydrophilic membranes exhibited less fouling, they displayed a lower flux than the hydrophobic membrane due to the hindrance in the wetted pores. The hydrophobic membrane was seriously fouled by the phenolic acid as shown in the Fourier transform infrared spectroscopy spectrum. Pore plugging occurred on these hydrophobic membranes as confirmed in the scanning electron microscope images.
文摘TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).Water contact angles on titanium oxide film surface were measured under both dark and sunlight illumination conditions.Corrosion tests were carried out in seawater under different illumination conditions by electrochemistry impedance spectrum (EIS) and polarization curves.The result showed that the TiO2 film prepared by the anodic oxidation method was anatase with a uniform structure and without obvious pores or cracks on its surface.The average water contact angle of the film was 116.4? in dark, in contrast to an angle of 42.7? under the UV illumination for 2 hours, which demonstrates good hydrophobic property.The anti-corrosion behavior of the TiO2 film was declining with the extended immersion time.Under dark conditions, however, the hydrophobic TiO2 film retarded the water infiltrating into the substrate.The impedance changed slowly and the corrosion current density was 2 orders of magnitude lower than that with the film illuminated by sunlight.All of those mentioned above indicate that the TiO2 film possesses much better performance under dark condition, and it can be applied as an engineering material under dark seawater environment.
基金Projects(21073162,21273199) supported by the National Natural Science Foundation of ChinaProject(GCTKF2012013) supported by the Science and Technology Bureau of Jiaxing Municipality and the State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology,China
文摘The corrosion behavior of 907 steel under thin electrolyte layer(TEL) has been investigated by means of cathodic polarization curve measurement, electrochemical impedance spectroscopy(EIS) and scanning electron microscopy(SEM). The results show that the cathodic diffusion current density presents the variation trend of initial increase and subsequent decrease with the decrease of TEL thickness, and the maximum deposits at 58 μm. The cotangent-hyperbolic impedance(O) is rationally first introduced to study the diffusion process of the reactants through the corrosion products layer with many permeable holes. The initial corrosion rate of 907 steel under different TEL thickness increases with the decrease of TEL thickness except that of 104 μm,whereas the corrosion rate after long time corrosion can be ranked as 104 μm﹥402 μm﹥198 μm﹥301 μm﹥bulk solution.
文摘The surface morphology of alloy layer of tinplate was studied by means of scanning electron microscopy. By using the layer on layer debonding technology of glow discharge spectrum, the contents of C and O at the boundary of alloy layer and black plate were analyzed. And the corrosion characteristic of cavity of tinplate alloy layer was studied on-line and in-situ by means of electrochemical atomic force microscope. The corrosion depth of cavity of alloy layer in-situ after different corrosion time was measured. The results show that the cavity of alloy layer is a critical factor causing rapid decline of corrosion resistance of tinplate, and the formation of cavity of alloy layer is due to incorrect pretreatment of black plate before electrotinning. The cavity of alloy layer is the internal factor causing pitting corrosion of tinplate when the tinplate is applied to food packaging material. And the dynamic equation of pitting corrosion generated in the cavity of alloy layer conforms to logarithm law.
基金Project(2011FA009) supported by the Natural Science Foundation of Yunnan Province,ChinaProject(2011FZ020) supported by the Application Foundation Research of Yunnan Province,China
文摘The stability of ionic liquid additive 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4) during zinc electrowinning from acidic sulfate solution was investigated by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. Compared with the traditional industrial additives, gelatine and gum arabic, [BMIM]HSO4 has more excellent chemical and thermal stabilities. The inhibition effects of gelatine and gum arabic on the zinc electrocrystallization are observed to markedly weaken due to their part degradation after 12 h longtime successive electrolysis and high temperature (90 ℃) treatments. In contrast, the activity of [BMIM]HSO4 is practically unaffected after 24 h longtime successive electrolysis and high temperature treatments. These results are corroborated with the corresponding morphological analysis of the cathodic deposits.
基金Project(51204211) supported by the National Natural Science Foundation of ChinaProject(2012M521543) supported by the China Postdoctoral Science Foundation
文摘High dispersed carbon black was applied for LiFePO4 cathodes as conductive agent.Nano-conductive carbon agent was pre-dispersed with poly acrylic acid(PAA) as dispersant in organic N-methyl-pyrrolidone(NMP) solvent system.The dispersion property of nano-conductive carbon agent was evaluated using particle size distribution measurements,scanning electron microscopy(SEM) and transmission electron microscope(TEM).LiFePO4 cathode with as-received nano-conductive carbon agent(SP) and LiFePO4 cathode with pre-dispersed nano-conductive carbon agent(SP-PAA) were examined by scanning electron microscopy(SEM),cyclic voltammetry(CV),electrochemical impendence spectroscopy(EIS) and charge/discharge cycling performance.Results show that the dispersion property of carbon black is improved by using PAA as the dispersant.The LiFePO4 cathodes with SP-PAA exhibit improved rate behaviors(4C,135.1 mAh/g) and cycle performance(95%,200 cycles) compared to LiFePO4 cathodes with SP(4C,103.9 mAh/g and 83%,200 cycles).Because pre-dispersed carbon black(SP-PAA) is dispersed homogeneously in the dried composite electrode to form a more uniform conductive network between the active material particles,electrochemical performances of the LiFePO4 cathodes are improved.
文摘The potential of di-(m-Formylphenol)-1,2-cyclohexandiimine as an environmentally friendly corrosion inhibitor for steel was investigated in 1 mol/L HCl using potentiodynamic polarization, electrochemical impedance spectroscopy and chronoamperometry measurements. All electrochemical measurements suggest that this compound is an excellent corrosion inhibitor for mild steel and the inhibition efficiency increases with the increase in inhibitor concentration. The effect of temperature on the corrosion behavior of mild steel with the addition of the Schiff base was studied in the temperature range from 25 °C to 65 °C. It is found that the adsorption of this inhibitor follows the Langmuir adsorption isotherms. The value of activation energy and the thermodynamic parameters such as ΔHads, ΔSads, Kads and ΔGads were calculated by the corrosion currents at different temperatures using the adsorption isotherm. The morphology of mild steel surface in the absence and presence of inhibitor was examined by scanning electron microscopy(SEM) images.
基金Project(KLUEH201302) supported by Funded by the Key Laboratory of Urban Environment and Health,Institute of Urban Environment,Chinese Academy of SciencesProject(51004053) supported by the National Natural Science Foundation of China+2 种基金Project(3502Z20116008) supported by the Science and Technology Research Project of Xiamen City,ChinaProject(JA11146) supported by the Program for Fostering Distinguished Young Scholars in University of Fujian Province,ChinaProject(2011B003) supported by the Foundation for Young Professors of Jimei University,China
文摘Four types of common seaweeds(Laminaria japonica,Undaria pinnatifida,Porphyra haitanensis,and Gracilaria lemaneiformis) were examined to remove Cr(Ⅵ) ions from aqueous solution.The experimental parameters that affected the biosorption process including pH,biomass dosage,contact time and temperature were investigated via batch experiments.The surface characteristics of seaweeds before and after Cr(Ⅵ) adsorption were studied with scanning electron microscopy and Fourier transform infrared spectroscopy.The results show that an initial solution with the pH of 1.0 is most favorable for Cr(Ⅵ) adsorption.Rapid adsorption is observed in the initial stage and adsorption equilibrium state is reached within 1 h.The adsorption efficiency by Porphyra haitanensis is the maximum among four types of seaweed powders,followed by Laminaria japonica and Undaria pinnatifida with biosorption efficiency up to 90%.The removal rate of Gracilaria lemaneiformis is less than 60%.The kinetic data obtained using the seaweeds are found to follow pseudo-second order kinetic model.Experimental sorption data adequately correlate with the Langmuir model.FTIR indicates that amino and carboxyl groups play an important role in the process of Cr(Ⅵ) adsorption and a large percentage of Cr(Ⅵ) ions are reduced by reductive groups on the surface of seaweeds.