The method of regularization factor selection determines stability and accuracy of the regularization method. A formula of regularization factor was proposed by analyzing the relationship between the improved SVD and ...The method of regularization factor selection determines stability and accuracy of the regularization method. A formula of regularization factor was proposed by analyzing the relationship between the improved SVD and regularization method. The improved SVD algorithm and regularization method could adapt to low SNR. The regularization method is better than the improved SVD in the case that SNR is below 30 and the improved SVD is better than the regularization method when SNR is higher than 30. The regularization method with the regularization factor proposed in this paper can be better applied into low SNR (5〈SNR) NMR logging. The numerical simulations and real NMR data process results indicated that the improved SVD algorithm and regularization method could adapt to the low signal to noise ratio and reduce the amount of computation greatly. These algorithms can be applied in NMR logging.展开更多
There is little low-and-high frequency information on seismic data in seismic exploration,resulting in narrower bandwidth and lower seismic resolution.It considerably restricts the prediction accuracy of thin reservoi...There is little low-and-high frequency information on seismic data in seismic exploration,resulting in narrower bandwidth and lower seismic resolution.It considerably restricts the prediction accuracy of thin reservoirs and thin interbeds.This study proposes a novel method to constrain improving seismic resolution in the time and frequency domain.The expected wavelet spectrum is used in the frequency domain to broaden the seismic spectrum range and increase the octave.In the time domain,the Frobenius vector regularization of the Hessian matrix is used to constrain the horizontal continuity of the seismic data.It eff ectively protects the signal-to-noise ratio of seismic data while the longitudinal seismic resolution is improved.This method is applied to actual post-stack seismic data and pre-stack gathers dividedly.Without abolishing the phase characteristics of the original seismic data,the time resolution is signifi cantly improved,and the structural features are clearer.Compared with the traditional spectral simulation and deconvolution methods,the frequency distribution is more reasonable,and seismic data has higher resolution.展开更多
Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown t...Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown that the entropy spectrum is equally spaced in both cases,identically to the spectrum obtained before for Schwarzschild,Reissner-Nordstr?m and Kerr black holes.Since the adiabatic invariance method does not use quasinormal mode analysis,there is no need to impose the small charge or small angular momentum limits and there is no confusion on whether the real part or the imaginary part of the modes is responsible for the entropy spectrum.展开更多
文摘The method of regularization factor selection determines stability and accuracy of the regularization method. A formula of regularization factor was proposed by analyzing the relationship between the improved SVD and regularization method. The improved SVD algorithm and regularization method could adapt to low SNR. The regularization method is better than the improved SVD in the case that SNR is below 30 and the improved SVD is better than the regularization method when SNR is higher than 30. The regularization method with the regularization factor proposed in this paper can be better applied into low SNR (5〈SNR) NMR logging. The numerical simulations and real NMR data process results indicated that the improved SVD algorithm and regularization method could adapt to the low signal to noise ratio and reduce the amount of computation greatly. These algorithms can be applied in NMR logging.
基金supported by the PetroChina Prospective,Basic,and Strategic Technology Research Project(No.2021DJ0606).
文摘There is little low-and-high frequency information on seismic data in seismic exploration,resulting in narrower bandwidth and lower seismic resolution.It considerably restricts the prediction accuracy of thin reservoirs and thin interbeds.This study proposes a novel method to constrain improving seismic resolution in the time and frequency domain.The expected wavelet spectrum is used in the frequency domain to broaden the seismic spectrum range and increase the octave.In the time domain,the Frobenius vector regularization of the Hessian matrix is used to constrain the horizontal continuity of the seismic data.It eff ectively protects the signal-to-noise ratio of seismic data while the longitudinal seismic resolution is improved.This method is applied to actual post-stack seismic data and pre-stack gathers dividedly.Without abolishing the phase characteristics of the original seismic data,the time resolution is signifi cantly improved,and the structural features are clearer.Compared with the traditional spectral simulation and deconvolution methods,the frequency distribution is more reasonable,and seismic data has higher resolution.
基金Supported by the Universidad Nacional de Colombia. Hermes Project Code 13038
文摘Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown that the entropy spectrum is equally spaced in both cases,identically to the spectrum obtained before for Schwarzschild,Reissner-Nordstr?m and Kerr black holes.Since the adiabatic invariance method does not use quasinormal mode analysis,there is no need to impose the small charge or small angular momentum limits and there is no confusion on whether the real part or the imaginary part of the modes is responsible for the entropy spectrum.