期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
谱混合模型方法优化及其在海洋水团分析与水交换研究中的应用
1
作者 宋军 刘玉龙 +4 位作者 李静 郭俊如 牟林 姚志刚 李希彬 《海洋通报》 CAS CSCD 北大核心 2016年第1期74-80,共7页
优化了谱混合模型(Spectral Mixture Model,SMM)分析方法,提出了谱混合模型方法中两个关键参数的一般优化方案。优化后的方法能够对大量的数据样本进行快速聚类分析,并通过求解概率密度函数确定不同聚类之间的混合区域。以该方法在海洋... 优化了谱混合模型(Spectral Mixture Model,SMM)分析方法,提出了谱混合模型方法中两个关键参数的一般优化方案。优化后的方法能够对大量的数据样本进行快速聚类分析,并通过求解概率密度函数确定不同聚类之间的混合区域。以该方法在海洋水团以及水交换中的应用为例,详细阐明了谱混合模型方法的工作原理及过程。在谱聚类方法基础上建立的谱混合模型分析法,避免了传统模糊聚类分析方法的不足,即使在物理量的散点数据分布呈现广泛连续性时,仍然能够抓住数据时空分布的主要变化方向,其在水团的辨别、水团边界以及水交换混合区的分布及其变化规律的研究中具有广泛的应用。 展开更多
关键词 聚类 谱混合模型 海洋水团分析 水交换 模糊数学 温度-盐度图
下载PDF
冬季大风影响下的渤黄海水交换特征 被引量:5
2
作者 李静 宋军 +3 位作者 牟林 王悦 李琰 王国松 《海洋通报》 CAS CSCD 北大核心 2015年第6期647-656,共10页
利用ROMS海洋数值模式对2006年冬季渤黄海的海洋动力环境进行模拟,基于温度、盐度模拟结果,使用谱混合模型进行水团分析,定义了渤海海峡地区的水交换区。并进一步讨论了冬季大风事件对水交换区的影响,给出了冬季大风影响下的渤黄海水交... 利用ROMS海洋数值模式对2006年冬季渤黄海的海洋动力环境进行模拟,基于温度、盐度模拟结果,使用谱混合模型进行水团分析,定义了渤海海峡地区的水交换区。并进一步讨论了冬季大风事件对水交换区的影响,给出了冬季大风影响下的渤黄海水交换特征。研究得出,冬季的黄海水团以"舌"形分布于渤海海峡地区,水交换区则表现为沿"舌"形边缘呈带状分布,具有西北--东南的走向趋势,并且在"舌"尖处的水交换面积最大。通过缩小研究范围,发现位于黄海最北部的沿岸海域并不参与渤黄海之间的水体交换。最后研究发现,冬季大风事件对渤海水交换具有促进作用,具体表现为:大风过程使黄海暖流对渤海的入侵更加深入,水交换区向渤海方向伸展,南部的水交换带变宽,河流径流进入渤海后与渤海水的混合区加大,并发生北移。 展开更多
关键词 渤海海峡 冬季大风 聚类 谱混合模型 水团分析 水交换
下载PDF
东海黑潮水交换区的定义及其时空分布规律研究
3
作者 宋军 郭俊如 +3 位作者 牟林 李静 刘玉龙 李希彬 《海洋通报》 CAS CSCD 北大核心 2016年第3期252-257,共6页
将谱混合模型(Spectral Mixture Model,SMM)方法应用到黑潮水与东中国海陆架水之间的水交换中。在此基础上,定义了东海黑潮流系与东中国海大陆架之间的水交换区,并进一步对该带状交换区的空间分布和时间变化规律进行研究。首次得到该交... 将谱混合模型(Spectral Mixture Model,SMM)方法应用到黑潮水与东中国海陆架水之间的水交换中。在此基础上,定义了东海黑潮流系与东中国海大陆架之间的水交换区,并进一步对该带状交换区的空间分布和时间变化规律进行研究。首次得到该交换区面积随时间的变化与东海黑潮流系穿越东中国海大陆架200 m等深线的向岸体积通量的变化呈现出-0.78的显著的负相关关系。另外,研究结果还揭示出,来自太平洋的季节内信号有可能穿越黑潮主轴进入东中国海海域。 展开更多
关键词 东中国海 黑潮 聚类 谱混合模型 水交换
下载PDF
Improvement of Urban Impervious Surface Estimation in Shanghai Using Landsat7 ETM+ Data 被引量:7
4
作者 YUE Wenze 《Chinese Geographical Science》 SCIE CSCD 2009年第3期283-290,共8页
This paper explores the potential to improve the impervious surface estimation accuracy using a multi-stage approach on the basis of vegetation-impervious surface-soil (V-I-S) model. In the first stage of Spectral Mix... This paper explores the potential to improve the impervious surface estimation accuracy using a multi-stage approach on the basis of vegetation-impervious surface-soil (V-I-S) model. In the first stage of Spectral Mixture Analysis (SMA) process, pixel purity index, a quantitative index for defining endmember quality, and a 3-dimensional endmember selection method were applied to refining endmembers. In the second stage, instead of obtaining impervious surface fraction by adding high and low albedo fractions directly, a linear regression model was built between impervious surface and high/low albedo using a random sampling method. The urban impervious surface distribution in the urban central area of Shanghai was predicted by the linear regression model. Estimation accuracy of spectral mixture analysis and impervious surface fraction were assessed using root mean square (RMS) and color aerial photography respectively. In comparison with three different research methods, this improved estimation method has a higher overall accuracy than traditional Linear Spectral Mixture Analysis (LSMA) method and the normalized SMA model both in root mean square error (RMSE) and standard error (SE). However, the model has a tendency to overestimate the impervious surface distribution. 展开更多
关键词 vegetation-impervious surface-soil model spectral mixture analysis impervious surface SHANGHAI
下载PDF
Construction of lake bathymetry from MODIS satellite data and GIS from 2003 to 2011
5
作者 严翼 肖飞 杜耘 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第3期720-731,共12页
In recent years, sedimentation conditions in Dongting Lake have varied greatly because of signifi cant changes in runoff and sediment load in the Changjiang(Yangtze) River following the construction of Three Gorges Da... In recent years, sedimentation conditions in Dongting Lake have varied greatly because of signifi cant changes in runoff and sediment load in the Changjiang(Yangtze) River following the construction of Three Gorges Dam. The topography of the lake bottom has changed rapidly because of the intense exchange of water and sediment between the lake and the Changjiang River. However, time series information on lake-bottom topographic change is lacking. In this study, we introduced a method that combines remote sensing data and in situ water level data to extract a record of Dongting Lake bottom topography from 2003 to 2011. Multi-temporal lake land/water boundaries were extracted from MODIS images using the linear spectral mixture model method. The elevation of water/land boundary points were calculated using water level data and spatial interpolation techniques. Digital elevation models of Dongting Lake bottom topography in different periods were then constructed with the multiple heighted waterlines. The mean root-mean-square error of the linear spectral mixture model was 0.036, and the mean predicted error for elevation interpolation was-0.19 m. Compared with fi eld measurement data and sediment load data, the method has proven to be most applicable. The results show that the topography of the bottom of Dongting Lake has exhibited uneven erosion and deposition in terms of time and space over the last nine years. Moreover, lake-bottom topography has undergone a slight erosion trend within this period, with 58.2% and 41.8% of the lake-bottom area being eroded and deposited, respectively. 展开更多
关键词 Dongting Lake geomorphy time-series maps remote sensing MODIS data water level
下载PDF
A spectral mixture model analysis of the Kuroshio variability and the water exchange between the Kuroshio and the East China Sea 被引量:6
6
作者 宋军 薛惠洁 +7 位作者 鲍献文 吴德星 柴扉 施磊 姚志刚 王勇智 南峰 万凯 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2011年第2期446-459,共14页
For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional... For understanding more about the water exchange between the Kuroshio and the East China Sea,We studied the variability of the Kuroshio in the East China Sea(ECS) in the period of 1991 to 2008 using a three-dimensional circulation model,and calculated Kuroshio onshore volume transport in the ECS at the minimum of 0.48 Sv(1 Sv ;106 m3/s) in summer and the maximum of 1.69 Sv in winter.Based on the data of WOA05 and NCEP,The modeled result indicates that the Kuroshio transport east of Taiwan Island decreased since 2000.Lateral movements tended to be stronger at two ends of the Kuroshio in the ECS than that of the middle segment.In addition,we applied a spectral mixture model(SMM) to determine the exchange zone between the Kuroshio and the shelf water of the ECS.The result reveals a significantly negative correlation(coefficient of-0.78) between the area of exchange zone and the Kuroshio onshore transport at 200 m isobath in the ECS.This conclusion brings a new view for the water exchange between the Kuroshio and the East China Sea.Additional to annual and semi-annual signals,intra-seasonal signal of probably the Pacific origin may trigger the events of Kuroshio intrusion and exchange in the ECS. 展开更多
关键词 East China Sea (ECS) KUROSHIO spectral clustering spectral mixture model water massanalysis water exchange
下载PDF
Sparse representation-based color visualization method for hyperspectral imaging
7
作者 王立国 刘丹凤 赵亮 《Applied Geophysics》 SCIE CSCD 2013年第2期210-221,237,共13页
In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial informat... In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial information of the whole image is retained. After the sparse representation, the color labels of the effective elements of the sparse coding dictionary are selected according to the sparse coefficient and then the mixed images are displayed. The generated images maintain spectral distance preservation and have good separability. For local ground objects, the proposed single-pixel mixed array and improved oriented sliver textures methods are integrated to display the specific composition of each pixel. This avoids the confusion of the color presentation in the mixed-pixel color display and can also be used to reconstruct the original hyperspectral data. Finally, the model effectiveness was proved using real data. This method is promising and can find use in many fields, such as energy exploration, environmental monitoring, disaster warning, and so on. 展开更多
关键词 HYPERSPECTRAL color visualization sparse representation multilayer visualization
下载PDF
Optimization of Isolation and Identification Conditions of Glibenclamide Annotation
8
作者 Ordabayeva Saule Kutymovna Karakulova Aizhan Shirinbekovna +1 位作者 Serikbayeva Aigul Djumadullayevna Mirsoatova Mokhinur 《Journal of Pharmacy and Pharmacology》 2016年第8期398-404,共7页
A method for dispersive liquid-liquid microextraction of glibenclamide on model mixtures with urine has been developed. The extraction conditions have been optimized and the influence of extractants and dispersing age... A method for dispersive liquid-liquid microextraction of glibenclamide on model mixtures with urine has been developed. The extraction conditions have been optimized and the influence of extractants and dispersing agent for allocation of toxicant from biosubstrate has been experimentally established. The method of TLC (thin layer chromatography) screening in order to remove endogenous and exogenous substances has been developed. The method of IR-spectroscopy for confirmatory analysis has been used. The combination of the two methods of analysis allows identifying glibenclamide quickly and reliably isolated from bioliquid and reducing the risk of false-positive results. 展开更多
关键词 GLIBENCLAMIDE dispersive liquid-liquid extraction biological liquid thin layer chromatography and infrared spectroscopy.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部