Biodiesel bioremediation in soils may occur by natural attenuation or by engineered techniques, such as biostimulation and bioaugmentation. The present study evaluated the degradation of biodiesel in two soils with di...Biodiesel bioremediation in soils may occur by natural attenuation or by engineered techniques, such as biostimulation and bioaugmentation. The present study evaluated the degradation of biodiesel in two soils with different particle size characteristics by the bioremediation processes of natural attenuation and biostimulation. The experiment was carried out ex situ, with the factors temperature, moisture content, and pH being controlled for the experimental period of 110 days. The study aimed at evaluating the biodegradation of a clayey soil (A) and a sandy soil (B), both contaminated with pure biodiesel, by using the analytical methods of respirometry and gas chromatography. Biostimulation treatments using nitrogen, phosphorus, and potassium solutions (NPK) promoted higher microbiological activity in both soils. At the end of the experiment, it was observed that biostimulation was more efficient when compared to natural attenuation, showing higher biodiesel degradation for both soils A (59.76%) and B (90.41%).展开更多
文摘Biodiesel bioremediation in soils may occur by natural attenuation or by engineered techniques, such as biostimulation and bioaugmentation. The present study evaluated the degradation of biodiesel in two soils with different particle size characteristics by the bioremediation processes of natural attenuation and biostimulation. The experiment was carried out ex situ, with the factors temperature, moisture content, and pH being controlled for the experimental period of 110 days. The study aimed at evaluating the biodegradation of a clayey soil (A) and a sandy soil (B), both contaminated with pure biodiesel, by using the analytical methods of respirometry and gas chromatography. Biostimulation treatments using nitrogen, phosphorus, and potassium solutions (NPK) promoted higher microbiological activity in both soils. At the end of the experiment, it was observed that biostimulation was more efficient when compared to natural attenuation, showing higher biodiesel degradation for both soils A (59.76%) and B (90.41%).