The automorphism group of the Toeplitz C^*- algebra, J(C^1), generated by Toeplitz op-erators with C^1-symbols on Dirichlet space D is discussed; the K0, K1-groups and the first cohomology group of J(C^1) are compute...The automorphism group of the Toeplitz C^*- algebra, J(C^1), generated by Toeplitz op-erators with C^1-symbols on Dirichlet space D is discussed; the K0, K1-groups and the first cohomology group of J(C^1) are computed. In addition, the author proves that the spectra of Toeplitz operators with C^1-symbols are always connected, and discusses the algebraic prop-erties of Toeplitz operators.In particular, it is proved that there is no nontrivial selfadjoint Toeplitz operator on D and Tψ^* = Tψ^- if and only if Tψ is a scalar operator.展开更多
文摘The automorphism group of the Toeplitz C^*- algebra, J(C^1), generated by Toeplitz op-erators with C^1-symbols on Dirichlet space D is discussed; the K0, K1-groups and the first cohomology group of J(C^1) are computed. In addition, the author proves that the spectra of Toeplitz operators with C^1-symbols are always connected, and discusses the algebraic prop-erties of Toeplitz operators.In particular, it is proved that there is no nontrivial selfadjoint Toeplitz operator on D and Tψ^* = Tψ^- if and only if Tψ is a scalar operator.