Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But s...Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using the dispersion relation of water surface waves, we derive the slope wavenumber spectrum models of capillary and capillary-gravity waves. Simultaneously, by using the slope wavenumber models, the dependence of the slope wavenumber spectrum on wind speed is analyzed using data obtained in an experiment which was performed in a laboratory wind wave tank. Generally speaking, the slope wavenumber spectra are influenced profoundly by the wind speed above water surface. The slope wavenumber spectrum increases with wind speed obviously and do not cross each other for different wind speeds. But, for the same wind speed, the slope wavenumber spectra are essentially identical, even though the capillary and capillary-gravity waves are excited at different times and locations. Furthermore, the slope wavenumber spectra obtained from the models agree quite well with experimental results as regards both the values and the shape of the curve.展开更多
Detection of a periodic signal hidden in noise is the goal of Superconducting Gravimeter (SG) data analysis. Due to spikes, gaps, datum shrifts (offsets) and other disturbances, the traditional FFT method shows inhere...Detection of a periodic signal hidden in noise is the goal of Superconducting Gravimeter (SG) data analysis. Due to spikes, gaps, datum shrifts (offsets) and other disturbances, the traditional FFT method shows inherent limitations. Instead, the least squares spectral analysis (LSSA) has showed itself more suitable than Fourier analysis of gappy, unequally spaced and unequally weighted data series in a variety of applications in geodesy and geophysics. This paper reviews the principle of LSSA and gives a possible strategy for the analysis of time series obtained from the Canadian Superconducting Gravimeter Installation (CGSI), with gaps, offsets, unequal sampling decimation of the data and unequally weighted data points.展开更多
Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy(TDLAS). Multiplicative Algebraic Reconstruction Technique(MART) algorithm was adopted for data ...Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy(TDLAS). Multiplicative Algebraic Reconstruction Technique(MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique(ART) algorithm.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60372077)
文摘Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using the dispersion relation of water surface waves, we derive the slope wavenumber spectrum models of capillary and capillary-gravity waves. Simultaneously, by using the slope wavenumber models, the dependence of the slope wavenumber spectrum on wind speed is analyzed using data obtained in an experiment which was performed in a laboratory wind wave tank. Generally speaking, the slope wavenumber spectra are influenced profoundly by the wind speed above water surface. The slope wavenumber spectrum increases with wind speed obviously and do not cross each other for different wind speeds. But, for the same wind speed, the slope wavenumber spectra are essentially identical, even though the capillary and capillary-gravity waves are excited at different times and locations. Furthermore, the slope wavenumber spectra obtained from the models agree quite well with experimental results as regards both the values and the shape of the curve.
文摘Detection of a periodic signal hidden in noise is the goal of Superconducting Gravimeter (SG) data analysis. Due to spikes, gaps, datum shrifts (offsets) and other disturbances, the traditional FFT method shows inherent limitations. Instead, the least squares spectral analysis (LSSA) has showed itself more suitable than Fourier analysis of gappy, unequally spaced and unequally weighted data series in a variety of applications in geodesy and geophysics. This paper reviews the principle of LSSA and gives a possible strategy for the analysis of time series obtained from the Canadian Superconducting Gravimeter Installation (CGSI), with gaps, offsets, unequal sampling decimation of the data and unequally weighted data points.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)(No.2014R1A1A4A01005191)and by(No.2015 H1C1A1035890)by MSIP(No.2015R1A2A2A 01006803)
文摘Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy(TDLAS). Multiplicative Algebraic Reconstruction Technique(MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique(ART) algorithm.