Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed...Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed. One was the disorderly charging and discharging mode based on travel habits, and the other was the orderly charging and discharging mode based on time-of-use(TOU) price;Monte Carlo method was used to verify the case. The scheme of the capacity optimization of photovoltaic charging station under two different charging and discharging modes with V2 G was proposed. The mathematical models of the objective function with the maximization of energy efficiency, the minimization of the investment and the operation cost of the charging system were established. The range of decision variables, constraints of the requirements of the power balance and the strategy of energy exchange were given. NSGA-Ⅱ and NSGA-SA algorithm were used to verify the cases, respectively. In both algorithms, by comparing with the simulation results of the two different modes, it shows that the orderly charging and discharging mode with V2 G is obviously better than the disorderly charging and discharging mode in the aspects of alleviating the pressure of power grid, reducing system investment and improving energy efficiency.展开更多
Over the past several years, the Taiwan Power Company has launched two smart pricing programs to assess the demand response of residential customers: the TOU (time-of-use) rate scheme and the DRI (demand reduction...Over the past several years, the Taiwan Power Company has launched two smart pricing programs to assess the demand response of residential customers: the TOU (time-of-use) rate scheme and the DRI (demand reduction incentive) scheme. This paper discusses these two programs and evaluates their respective performances. We develop an efficient approach based on marginal cost pricing to redesign the TOU rate scheme. In our finding, the TOU price levels could be revised to encourage more customers to participate by enlarging the price gap. Moreover, the DRI scheme can be further improved in order to reach an efficient win-win solution among customers, the utility and society. This can be achieved via a careful design of incentive tariff discounts to take account of the time-of-use or location-specific features of the power supply/demand condition.展开更多
基金Project(3502Z20179026)supported by Xiamen Science and Technology Project,China。
文摘Large-scale electric vehicles(EVs) connected to the micro grid would cause many problems. In this paper, with the consideration of vehicle to grid(V2 G), two charging and discharging load modes of EVs were constructed. One was the disorderly charging and discharging mode based on travel habits, and the other was the orderly charging and discharging mode based on time-of-use(TOU) price;Monte Carlo method was used to verify the case. The scheme of the capacity optimization of photovoltaic charging station under two different charging and discharging modes with V2 G was proposed. The mathematical models of the objective function with the maximization of energy efficiency, the minimization of the investment and the operation cost of the charging system were established. The range of decision variables, constraints of the requirements of the power balance and the strategy of energy exchange were given. NSGA-Ⅱ and NSGA-SA algorithm were used to verify the cases, respectively. In both algorithms, by comparing with the simulation results of the two different modes, it shows that the orderly charging and discharging mode with V2 G is obviously better than the disorderly charging and discharging mode in the aspects of alleviating the pressure of power grid, reducing system investment and improving energy efficiency.
文摘Over the past several years, the Taiwan Power Company has launched two smart pricing programs to assess the demand response of residential customers: the TOU (time-of-use) rate scheme and the DRI (demand reduction incentive) scheme. This paper discusses these two programs and evaluates their respective performances. We develop an efficient approach based on marginal cost pricing to redesign the TOU rate scheme. In our finding, the TOU price levels could be revised to encourage more customers to participate by enlarging the price gap. Moreover, the DRI scheme can be further improved in order to reach an efficient win-win solution among customers, the utility and society. This can be achieved via a careful design of incentive tariff discounts to take account of the time-of-use or location-specific features of the power supply/demand condition.