AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into shamoper...AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into shamoperated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, signif icantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modif ies the normal function in some brain regions.展开更多
AIM: To assess whether portacaval anastomosis (PCA) in rats affects the protein expression and/or activity of glutaminase in kidneys, intestines and in three brain areas of cortex, basal ganglia and cerebellum and ...AIM: To assess whether portacaval anastomosis (PCA) in rats affects the protein expression and/or activity of glutaminase in kidneys, intestines and in three brain areas of cortex, basal ganglia and cerebellum and to explain the neurological alterations found in hepatic encephalopathy (HE). METHODS: Sixteen male Wistar rats weighing 250-350 g were grouped into sham-operation control (n=8) or portacaval shunt (n = 8). Twenty-eight days after the procedure, the animals were sacrificed. The duodenum, kidney and brain were removed, homogenised and mitochondria were isolated. Ammonia was measured in brain and blood. Phosphate-activated glutaminase (PAG) activity was determined by measuring ammonia production following incubation for one hour at 37 ℃ with O-phthalaldehyde (OPA) and specific activity expressed in units per gram of protein (pkat/g of protein). Protein expression was measured by immunoblotting. RESULTS: Duodenal and kidney PAG activities together with protein content were significantly higher in PCA group than in control or sham-operated rats (duodenum PAG activity was 976.95±268.87μkat/g of protein in PCA rats vs 429.19±126.92.μkat/g of protein in shamoperated rats; kidneys PAG activity was 1259.18±228.79 μkat/g protein in PCA rats vs 669.67±400.8 μkat/g of protein in controls, P〈0.05; duodenal protein content: 173% in PCA vs sham-operated rats; in kidneys the content of protein was 152% in PCA vs sham-operated rats). PAG activity and protein expression in PCA rats were higher in cortex and basal ganglia than those in shamoperated rats (cortex: 6646.6 ±1870.4 μkat/g of protein vs 3573.8± 2037.4 μkat/g of protein in control rats, P〈 0.01; basal ganglia, PAG activity was 3657.3± 1469.6 μkat/g of protein in PCA rats vs 2271.2±384 μkat/g of protein in sham operated rats, P〈0.05; In the cerebellum, the PAG activity was 2471.6±701.4 μkat/g of protein vs 1452.9 ±567.8 μkat/g of protein in the PCA and sham rats, respectively, P〈0.05; content of protein: cerebral cortex: 162% ±40% vs 100% ± 26%, P〈 0.009; and basal ganglia: 140% ±39% vs 100% ±14%, P〈0.05; but not in cerebellum: 100% ±25% vs 100% ± 16%, P= ns). CONCLUSION: Increased PAG activity in kidney and duodenum could contribute significantly to the hyperammonaemia in PCA rats, animal model of encephalopathy. PAG is increased in non-synaptic mitochondria from the cortex and basal ganglia and could be implicated in the pathogenesis of hepatic encephalopathy. Therefore, PAG could be a possible target for the treatment of HE or liver dysfunction.展开更多
The physical stresses associated with emersion have long been considered major factors determining the vertical zona- tion of intertidal seaweeds. We examined Porphyra umbilicalis (Linnaeus) Kiitzing thalli from the...The physical stresses associated with emersion have long been considered major factors determining the vertical zona- tion of intertidal seaweeds. We examined Porphyra umbilicalis (Linnaeus) Kiitzing thalli from the vertical extremes in elevation of an intertidal population (i.e. upper and lower intertidal zones) to determine whether Porphyra thalli acclimate to different vertical elevations on the shore with different patterns of nitrate uptake and nitrate reductase (NR) and glutamine synthetase (GS) activities in response to different degrees of emersion stress. We found that the nitrate uptake and NR recovery in the emersed tissues took longer in lower intertidal sub-population than in upper intertidal sub-population; and GS activity was also significantly affected by emersion and, interestingly, such an activity was enhanced by emersion of thalli from both upper and lower intertidal zones. These results sug- gested that intta-population variability in post-emersion recovery of physiological functions such as nutrient uptake and NR activity enables local adaptation and contributes to the wide vertical distribution ofP. umbilicalis. The high GS activity during periodic emer- sion stress may be a protective mechanism enabling P umbilicalis to assimilate nitrogen quickly when it again becomes available, and may also be an evidence ofphotorespiration during emersion.展开更多
基金Supported by Grant B013 from the University of Buenos Aires, Argentina and PIP 5869 from National Research Council of Argentina
文摘AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into shamoperated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, signif icantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modif ies the normal function in some brain regions.
基金Supported by funding from the Spanish Ministry of Health (grants # PI040384 and # 03/155-2002) awarded to the Spanish Network of Hepatic Encephalopathy Research and a grant from PAI (CTS-532)
文摘AIM: To assess whether portacaval anastomosis (PCA) in rats affects the protein expression and/or activity of glutaminase in kidneys, intestines and in three brain areas of cortex, basal ganglia and cerebellum and to explain the neurological alterations found in hepatic encephalopathy (HE). METHODS: Sixteen male Wistar rats weighing 250-350 g were grouped into sham-operation control (n=8) or portacaval shunt (n = 8). Twenty-eight days after the procedure, the animals were sacrificed. The duodenum, kidney and brain were removed, homogenised and mitochondria were isolated. Ammonia was measured in brain and blood. Phosphate-activated glutaminase (PAG) activity was determined by measuring ammonia production following incubation for one hour at 37 ℃ with O-phthalaldehyde (OPA) and specific activity expressed in units per gram of protein (pkat/g of protein). Protein expression was measured by immunoblotting. RESULTS: Duodenal and kidney PAG activities together with protein content were significantly higher in PCA group than in control or sham-operated rats (duodenum PAG activity was 976.95±268.87μkat/g of protein in PCA rats vs 429.19±126.92.μkat/g of protein in shamoperated rats; kidneys PAG activity was 1259.18±228.79 μkat/g protein in PCA rats vs 669.67±400.8 μkat/g of protein in controls, P〈0.05; duodenal protein content: 173% in PCA vs sham-operated rats; in kidneys the content of protein was 152% in PCA vs sham-operated rats). PAG activity and protein expression in PCA rats were higher in cortex and basal ganglia than those in shamoperated rats (cortex: 6646.6 ±1870.4 μkat/g of protein vs 3573.8± 2037.4 μkat/g of protein in control rats, P〈 0.01; basal ganglia, PAG activity was 3657.3± 1469.6 μkat/g of protein in PCA rats vs 2271.2±384 μkat/g of protein in sham operated rats, P〈0.05; In the cerebellum, the PAG activity was 2471.6±701.4 μkat/g of protein vs 1452.9 ±567.8 μkat/g of protein in the PCA and sham rats, respectively, P〈0.05; content of protein: cerebral cortex: 162% ±40% vs 100% ± 26%, P〈 0.009; and basal ganglia: 140% ±39% vs 100% ±14%, P〈0.05; but not in cerebellum: 100% ±25% vs 100% ± 16%, P= ns). CONCLUSION: Increased PAG activity in kidney and duodenum could contribute significantly to the hyperammonaemia in PCA rats, animal model of encephalopathy. PAG is increased in non-synaptic mitochondria from the cortex and basal ganglia and could be implicated in the pathogenesis of hepatic encephalopathy. Therefore, PAG could be a possible target for the treatment of HE or liver dysfunction.
基金supported by grants to C.Yarish from the Perkin Elmer Analytical Division of E,G & G,Wellesley,MA,USA,Connecticut Sea Grant College Program (2001-2003)National Oceanic and Atmospheric Administration's National Marine Aquaculture Initiative (DOC/U.S.A.+2 种基金2001-2004)awards to J.K. Kim from the Department of Ecology and Evolutionary Biology,University of Connecticut (Ronald Bamford Award)from the Connecticut Museum of Natural History (Henry N. Andrew and Francis Rice Trainor Awards)
文摘The physical stresses associated with emersion have long been considered major factors determining the vertical zona- tion of intertidal seaweeds. We examined Porphyra umbilicalis (Linnaeus) Kiitzing thalli from the vertical extremes in elevation of an intertidal population (i.e. upper and lower intertidal zones) to determine whether Porphyra thalli acclimate to different vertical elevations on the shore with different patterns of nitrate uptake and nitrate reductase (NR) and glutamine synthetase (GS) activities in response to different degrees of emersion stress. We found that the nitrate uptake and NR recovery in the emersed tissues took longer in lower intertidal sub-population than in upper intertidal sub-population; and GS activity was also significantly affected by emersion and, interestingly, such an activity was enhanced by emersion of thalli from both upper and lower intertidal zones. These results sug- gested that intta-population variability in post-emersion recovery of physiological functions such as nutrient uptake and NR activity enables local adaptation and contributes to the wide vertical distribution ofP. umbilicalis. The high GS activity during periodic emer- sion stress may be a protective mechanism enabling P umbilicalis to assimilate nitrogen quickly when it again becomes available, and may also be an evidence ofphotorespiration during emersion.