In this study, the inhibitory effect of jujuboside A (JuA) on a penicillin sodium (Na-PCN) induced hyperactivity model was investigated. Cortical EEG (electroencephalogram) and the concentration of hippocampal Glutama...In this study, the inhibitory effect of jujuboside A (JuA) on a penicillin sodium (Na-PCN) induced hyperactivity model was investigated. Cortical EEG (electroencephalogram) and the concentration of hippocampal Glutamate (Glu) were monitored simultaneously in vivo as indicators of rat’s excitatory state. Power spectral density (PSD) and gravity frequency of PSD were calculated. JuA (0.05 g/L and 0.1 g/L) inhibited the EEG excitation effect caused by Na-PCN by increasing the power of δ1 and δ2 bands (P<0.01 vs model) and lowering the gravity frequency of PSD (P<0.01 vs model). JuA also remarkably reduced the Glu elevation induced by Na-PCN (P<0.05 vs model). Diazepam also depressed Glu concentration and lowered the gravity frequency, but it showed a different EEG pattern in increased β2-activity (P<0.01 vs model). EEG excitation caused by Na-PCN correlated with Glu elevation during the first hour. Neurophysiological inhibitory effects of JuA and diazepam were more persistent than their Glu inhibitoty effects.展开更多
基金Project supported by the National Natural Science Foundation ofChina (No. 30170275) and the Key Laboratory for Biomedical En-gineering of the Ministry of Education of China and Science andTechnology Department of Zhejiang Province (No. 011106239)
文摘In this study, the inhibitory effect of jujuboside A (JuA) on a penicillin sodium (Na-PCN) induced hyperactivity model was investigated. Cortical EEG (electroencephalogram) and the concentration of hippocampal Glutamate (Glu) were monitored simultaneously in vivo as indicators of rat’s excitatory state. Power spectral density (PSD) and gravity frequency of PSD were calculated. JuA (0.05 g/L and 0.1 g/L) inhibited the EEG excitation effect caused by Na-PCN by increasing the power of δ1 and δ2 bands (P<0.01 vs model) and lowering the gravity frequency of PSD (P<0.01 vs model). JuA also remarkably reduced the Glu elevation induced by Na-PCN (P<0.05 vs model). Diazepam also depressed Glu concentration and lowered the gravity frequency, but it showed a different EEG pattern in increased β2-activity (P<0.01 vs model). EEG excitation caused by Na-PCN correlated with Glu elevation during the first hour. Neurophysiological inhibitory effects of JuA and diazepam were more persistent than their Glu inhibitoty effects.