The tafoni that develop in sandstone cliffs have attracted the interest of both scientists and the general public. A necklace-like tafone system, referred to here as beaded tafoni, has developed in the prominent cliff...The tafoni that develop in sandstone cliffs have attracted the interest of both scientists and the general public. A necklace-like tafone system, referred to here as beaded tafoni, has developed in the prominent cliffs of the Danxia landscapes within the Longhushan Global Geopark in the subtropical zone of South China. This paper presents a new model of the formation of this system of extraordinary beaded tafoni. The cliffs of the Danxia landscapes of the study area are composed of an alluvial conglomerate(i.e.,red beds). These Danxia landscapes have subrounded summits that are covered by vegetation and experience a nearly vertical water flow induced by gravity. Erosion and collapse of the outsized gravels and concentrated pebbles in the red beds give rise to the initial development of the beaded tafoni. The tafoni then become rounded and beaded as a result of reworking and decay by fluvial outwash. During storms, intense water flows run vertically down the cliffs and generate a whirling motion in the tafoni.Consequently, the inside walls of the tafoni gradually become wider and smoother. During the late development stage, the beaded tafoni tend to become indistinct or disappear because of the interconnection of the tafoni and subsequent merging with the bedding-controlled cavities.展开更多
Nitrogen(N) and phosphorus(P) are limited nutrients in terrestrial ecosystems, and their limitation patterns are being changed by the increase in N deposition. However, little information concerns the plant growth and...Nitrogen(N) and phosphorus(P) are limited nutrients in terrestrial ecosystems, and their limitation patterns are being changed by the increase in N deposition. However, little information concerns the plant growth and the soil biological responses to N and P additions among different soils simultaneously, and these responses may contribute to understand plant-soil interaction and predict plant performance under global change. Thus, this study aimed to explore how N and P limitation changes in different soil types, and reveal the relationship between plant and soil biological responses to nutrient additions. We planted Dodonaea viscosa, a globally distributed species in three soil types(Lixisols, Regosols and Luvisols) in Yuanmou dry-hot valley in Southwest China and fertilized them factorially with N and P. The growth and biomass characters of D. viscosa, soil organic matter, available N, P contents and soil carbon(C), N, P-related enzyme activities were quantified. N addition promoted the growth and leaf N concentration of D. viscosa in Lixisols; N limitation in Lixisols was demonstrated by lower soil available N with higher urease activity. P addition promoted the growth and leaf P concentration of D. viscosa in Luvisols; severe P limitation in Luvisols was demonstrated by a higher soil available N: P ratio with higher phosphatase activity. Urease activity was negatively correlated with soil available N in Nlimited Lixisols, and phosphatase activity was negatively correlated with soil available P in P-limited Luvisols. Besides, the aboveground biomass and leaf N concentration of D. viscosa were positively correlated with soil available N in Lixisols, but the aboveground biomass was negatively correlated with soil available P. Our results show similar nutrient limitation patterns between plant and soil microorganism in the condition of enough C, and the nutrient limitations differ across soil types. With the continued N deposition, N limitation of the Lixisols in dry hot valleys is expected to be alleviated, while P limitation of the Luvisols in the mountaintop may be worse in the future, which should be considered when restoring vegetation.展开更多
A field experiment was conducted in a well-puddled paddy field developed on the Tama River alluvial soil in the Farm of Tokyo University of Agriculture and Technology, Japan, to study the effect of intermittent irriga...A field experiment was conducted in a well-puddled paddy field developed on the Tama River alluvial soil in the Farm of Tokyo University of Agriculture and Technology, Japan, to study the effect of intermittent irrigation on water use efficiency of paddy rice. Four treatments were arranged with 2 replicates: continuous flooding irrigation treatments (CFI), and three intermittent irrigation treatments Ⅱ-0, Ⅱ-1 and Ⅱ-2, in which plants were re-irrigated when the soil water potential fell below 0, -10, and -20 kPa, respectively, at soil depth of about 5 cm. Water consumption was lower in treatment Ⅱ-0 than in treatment CFI because the percolation rate was reduced by the reduction in the hydraulic head of ponded water. Intermittent irrigation led to soil repeated shrinking and swelling in Ⅱ-1 and Ⅱ-2 plots and, therefore, soil cracks developed rapidly. Since they became the major routes of water percolation, the soil cracks increased water consumption in treatments Ⅱ-1 and Ⅱ-2. There were no significant differences in dry matter production and grain yields between treatment Ⅱ-0 and treatment CFI, but the dry matter production and grain yields in treatments Ⅱ-0 and CFI were significantly higher than those in treatments Ⅱ-1 and Ⅱ-2. Therefore, the water use efficiency in the treatments was in the order of Ⅱ-0 > CFI > Ⅱ- 2 > Ⅱ- 1.展开更多
Feeding costs could be reduced by use of alternative energy and protein sources. Leguminous trees remain green through the dry season, serving as a crude protein bank besides improving soil fertility through nitrogen ...Feeding costs could be reduced by use of alternative energy and protein sources. Leguminous trees remain green through the dry season, serving as a crude protein bank besides improving soil fertility through nitrogen fixation, nutrients recycling and stabilising soil on terraces. Some Kenyan farmers intercrop bananas with forages to cope with the perennial feed shortages. A simulation model assumed a family of six (husband, wife and four children) owning one cow producing 15 kg milk per day, living on 0.4 ha of land. Bananas grown on 0.36 ha in alleys of alternating rows ofLeucaena diversifolia and Calliandra calothyrses, intercropped with Guinea grass (Panicum maximum) and Desmodium uncinatum. Napier (Pennisetum purpureum) was planted in the alleys as a pure stand on 0.08 ha. Model analysis showed the household had adequate energy and protein all the year and was financially secured, with income exceeding routine expenditure. There were positive balances for nitrogen and phosphorus, but potassium application was required. A replica of the model was then tested.展开更多
Glaciers were solid reservoirs and important water resources in western China,but they were retreating significantly in context of global warming.Laohugou Glacier No.12 was the largest valley glacier in Qilian Mountai...Glaciers were solid reservoirs and important water resources in western China,but they were retreating significantly in context of global warming.Laohugou Glacier No.12 was the largest valley glacier in Qilian Mountains.In this study,realtime kinematic(RTK)data,topographic map and World View-2 satellite imagery were used to measure changes in terminus,extent and volume of Laohugou Glacier No.12.Results showed that Laohugou Glacier No.12 was shrinking significantly since 1957.From1960 to 2015,the terminus reduction of Laohugou Glacier No.12 was 402.96 m(3.99%)in total,and glacier length decreased to 9.7 km from 10.1 km.Reduction of glacier area and volume were the most obvious.From 1957 to 2015,glacier area and volume decreased by 1.54 km^2(7.03%)and 0.1816 km^3,respectively.Reduction trend of terminus and area was slowing in 1950-1980s,even stable for a period in the mid-1980s,and then accelerated.Ice core analysis result and nearly meteorological station data shown an increasing trend of temperature in 1957-2015,it was a main reason of continuous retreating of Laohugou Glacier No.12.展开更多
Jilong is a place behind The Himalayas,which is almost isolated from the world.There is typical vertical ecosystem thanks to its special geological environment. So it is honored as “the most abundant species gene war...Jilong is a place behind The Himalayas,which is almost isolated from the world.There is typical vertical ecosystem thanks to its special geological environment. So it is honored as “the most abundant species gene warehouse in the Plateau Area”and “the most beautiful valley in the world”.To exploit this valleyis necessary along with the construction of Jilong Porton the border of Sino-Nepal. Based on the research on the spot,the ecological resources there are evaluated and an idea that regards hiking tourism asmain form and ecotourismas the theme is put forward in this paper,which explores a way to develop the valley on the basis of sustainability.展开更多
An online survey addressed to members listed in the European Cooperative Programme for Crop Genetic Resources Networks Working Group on Graithe current problems in the management of GL germplasm, to work out the crite...An online survey addressed to members listed in the European Cooperative Programme for Crop Genetic Resources Networks Working Group on Graithe current problems in the management of GL germplasm, to work out the criterian Legumes and Grain Legumes (GL) germplasm managers and breeders was carded out to pinpoint and decisions involved in the implementation of regeneration procedures and to identify strategic areas where further research is required. The survey was divided into three sections: (1) germplasm collection details and current status of the regeneration needs; (2) assessment over the understanding of basic information required to carry out appropriate regeneration procedures such as the breeding systems, the pollination requirements and pollinating agents, the isolation techniques and regeneration facilities; and (3) assessment of different options, in addition to "ex situ", such as "in situ" and "on farm" conservation. Obtaining, collating and analysing different kinds of existing data on mating system of GL species, effective pollination control methods and isolation facilities by species and location is one example of a priority issue. The GL community makes a clear request for greater support for the development of well-designed methodologies of regeneration that maintain the genetic structure of populations and that the optimum regeneration strategy is most likely to be achieved through integrating pollinators with the regeneration procedures. A major concern of the GL community is the lack of empirical scientific information on the most suitable pollinator agents.展开更多
There are eighty sedimentary basins in five different types in African continent,i.e.craton sag basin,foreland basin,intermountain basin,passive margin basin and rift basin,which underwent the stress environment of st...There are eighty sedimentary basins in five different types in African continent,i.e.craton sag basin,foreland basin,intermountain basin,passive margin basin and rift basin,which underwent the stress environment of stable depression-compression-extension.The first three types of basins had been intensely influenced by Hercynian and Alpine tectonic movement,while the later two types of basins always exist in a stable extension environment.Different basin evolution caused the obviously hydrocarbon distribution difference.In North Africa,marginal craton sag and rift basins show great expedition potential of hydrocarbon,marginal craton sag basins had good formation and preservation of Lower Silurian hot shale,tectonic-strata traps and migration pathway formed by Hercynian unconformity,and rift basins had excellent Upper Cretaceous marine source rocks and good hydrocarbon preservation with little tectonic activity.Meanwhile,in the salt-containing passive margin basins and delta basins of West Africa,thick strata containing high quality source rocks and plastic strata were well developed.Source rocks of high maturity,good hydrocarbon preservation,growth faults and deformational structure traps were formed by abundant overlying sediments and sources supplied from Tertiary large water system.展开更多
Trends in land use and water consumption are crucial components in understanding the changing nature of agricultural production and water use in- the Northern Jordan Valley. The objective of this study is to examine c...Trends in land use and water consumption are crucial components in understanding the changing nature of agricultural production and water use in- the Northern Jordan Valley. The objective of this study is to examine current agricultural land uses in the Jordan Valley and their water consumption patterns as well as to examine the changes in land use and water consumption that occurred between the years 2002 and 2010. Farm level cropping patterns and total annual water use were analysed in order to examine inter-basin land use and water consumption characteristics as well as to estimate the amount of water consumed by each respective crop in total and per unit of land devoted to its production. It was found that citrus production dominated both land and water usage in every basin of the Northern Jordan Valley and that between 2002 and 2010 there were shifts toward increasing citrus production in almost every basin surveyed. It was found that agricultural irrigation water usage decreased overall between 2002 and 2010 by approximately 15 percent and irrigated land usage in the Jordan Valley increased by 5 percent. The role of citrus farming is becoming more important in the Jordan Valley as Jordan's agricultural economy shifts away from subsistence farming for staple food crops like wheat and vegetables toward more financially lucrative crops grown for an increasingly international market. This trend is at least partly due to the increasing cost of agricultural irrigation water from Jordan's national canal system.展开更多
The mountainous hydrological process usually shows high variation to climate change and human action. In the Longitudinal Range-Gorge Region(LRGR), Southwestern China and Southeast Asian, the transboundary runoff va...The mountainous hydrological process usually shows high variation to climate change and human action. In the Longitudinal Range-Gorge Region(LRGR), Southwestern China and Southeast Asian, the transboundary runoff variations are much more sensitive and complex under the interaction of climate change, "corridor-barrier" functions in LRGR,and dams building. In this paper, based on the long hydrological records(1956-2013) from three mainstream hydrological stations in Nu River,Lancang River, and Red River, the region runoff variations were analyzed. The results show out: i) the regional runoff changes were strongly influenced by the "Corridor-Barrier" functions in LRGR from west to east, the variability extent of annual runoff increased, but tended to decrease after 2009 and the reduced extents also increased; ii) the annual runoff change in the three rivers had high concentration degrees; iii) there were periodicities of 33 years of runoff change in Nu River and Lancang River, and 30 years in Red River, and the lower flow period would continue for 8-9 years in Nu River and Lancang River but only for 4 years in Red River; iv) since 2010, as the two mega dams of Xiaowan and Nuozhadu built in Lancang River mainstream, their variations of annual runoff were quite different. The research results could offer a scientific base for sustainable utilization,conservation, and management of the regional water resources展开更多
The Grand Canyon is a massive rift in the Colorado Plateau. How and when it developed has been debated for nearly 150 years. Most geologists believe the unusual landscape was primarily shaped by water erosion.Here we ...The Grand Canyon is a massive rift in the Colorado Plateau. How and when it developed has been debated for nearly 150 years. Most geologists believe the unusual landscape was primarily shaped by water erosion.Here we propose a stress-rifting model to provide an alternative explanation for the origin of Grand Canyon.This paper adopts a brittle–ductile double layer model to simulate the deformation and rifting of the plateau due to the mantle-melting-induced expansion. Our results show that the uplift induced by thermal expansion and its associated horizontal extension can cause open fractures that extend from the brittle surface to the underlying ductile layer in a top-down way. In addition, we find that episodic uplift can deepen and connect multiple fractures together to form a larger fracture network. Our findings suggest that the formation of the Grand Canyon might have been driven by plateau uplift and its associated rifting under crustal extension, wherein water erosion played only a minor role in shaping the course of the Colorado River. The new paradigm provides simpler explanations to some of the long-standing geological mysteries surrounding the canyon.展开更多
Deep-water canyon systems can provide important sandstone reservoirs for deep-water oil and gas exploration in the South China Sea;however,the sedimentary provenance of the Central Canyon in the Qiongdongnan Basin rem...Deep-water canyon systems can provide important sandstone reservoirs for deep-water oil and gas exploration in the South China Sea;however,the sedimentary provenance of the Central Canyon in the Qiongdongnan Basin remains controversial.In this work,detrital zircon grains from three drilling sandstones in the Upper Miocene Huangliu Formation in the western part of the Central Canyon were analysed by LA-ICP-MS for U-Pb ages,in order to constrain their provenance.One hundred and ninety-one zircon grains yield concordant U-Pb ages ranging from 28.6 to 3285 Ma.Most of them show oscillatory or linear zoning in CL-images and high Th/U ratios(>0.1),suggesting that they are magmatic zircons.Three major age clusters at about30 Ma(N=6),220–270 Ma(N=29),and 420–440 Ma(N=13),and five minor age clusters at 70–110 Ma(N=7),150–170 Ma(N=4),800–850 Ma(N=11),1800–2000 Ma(N=16),and 2400–2600 Ma(N=7),can be identified in the age spectrum,which are very similar to those of the Upper Miocene sandstones and modern river sands in the Red River area,but different from those of other nearby regions(e.g.,Hainan Island,the Pearl River area,and the Mekong River area)in Southeast Asia.The major age peak at about 30 Ma in our samples is consistent with the timing of tectonothermal events in the Red River Fault Zone.Therefore,we suggest that the provenance of the western part of the Central Canyon,in the Qiongdongnan Basin,was fed dominantly by the Paleo-Red River system during the Late Miocene.展开更多
基金financially supported by National Natural Science Foundation of China (Grant Nos. 41772197, 41602113)Open Research Fund from the Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals (Shandong University of Science and Technology+1 种基金 Grant No. DMSM2017011)Jiangxi Provincial Graduate Innovation Fund Project (YC2018-S336)
文摘The tafoni that develop in sandstone cliffs have attracted the interest of both scientists and the general public. A necklace-like tafone system, referred to here as beaded tafoni, has developed in the prominent cliffs of the Danxia landscapes within the Longhushan Global Geopark in the subtropical zone of South China. This paper presents a new model of the formation of this system of extraordinary beaded tafoni. The cliffs of the Danxia landscapes of the study area are composed of an alluvial conglomerate(i.e.,red beds). These Danxia landscapes have subrounded summits that are covered by vegetation and experience a nearly vertical water flow induced by gravity. Erosion and collapse of the outsized gravels and concentrated pebbles in the red beds give rise to the initial development of the beaded tafoni. The tafoni then become rounded and beaded as a result of reworking and decay by fluvial outwash. During storms, intense water flows run vertically down the cliffs and generate a whirling motion in the tafoni.Consequently, the inside walls of the tafoni gradually become wider and smoother. During the late development stage, the beaded tafoni tend to become indistinct or disappear because of the interconnection of the tafoni and subsequent merging with the bedding-controlled cavities.
基金supported financially by the National Natural Science Foundation of China(Grant Nos.41471232,31460127)
文摘Nitrogen(N) and phosphorus(P) are limited nutrients in terrestrial ecosystems, and their limitation patterns are being changed by the increase in N deposition. However, little information concerns the plant growth and the soil biological responses to N and P additions among different soils simultaneously, and these responses may contribute to understand plant-soil interaction and predict plant performance under global change. Thus, this study aimed to explore how N and P limitation changes in different soil types, and reveal the relationship between plant and soil biological responses to nutrient additions. We planted Dodonaea viscosa, a globally distributed species in three soil types(Lixisols, Regosols and Luvisols) in Yuanmou dry-hot valley in Southwest China and fertilized them factorially with N and P. The growth and biomass characters of D. viscosa, soil organic matter, available N, P contents and soil carbon(C), N, P-related enzyme activities were quantified. N addition promoted the growth and leaf N concentration of D. viscosa in Lixisols; N limitation in Lixisols was demonstrated by lower soil available N with higher urease activity. P addition promoted the growth and leaf P concentration of D. viscosa in Luvisols; severe P limitation in Luvisols was demonstrated by a higher soil available N: P ratio with higher phosphatase activity. Urease activity was negatively correlated with soil available N in Nlimited Lixisols, and phosphatase activity was negatively correlated with soil available P in P-limited Luvisols. Besides, the aboveground biomass and leaf N concentration of D. viscosa were positively correlated with soil available N in Lixisols, but the aboveground biomass was negatively correlated with soil available P. Our results show similar nutrient limitation patterns between plant and soil microorganism in the condition of enough C, and the nutrient limitations differ across soil types. With the continued N deposition, N limitation of the Lixisols in dry hot valleys is expected to be alleviated, while P limitation of the Luvisols in the mountaintop may be worse in the future, which should be considered when restoring vegetation.
基金Project (No. 49971043) supported partly by the National Natural Science Foundation of China.
文摘A field experiment was conducted in a well-puddled paddy field developed on the Tama River alluvial soil in the Farm of Tokyo University of Agriculture and Technology, Japan, to study the effect of intermittent irrigation on water use efficiency of paddy rice. Four treatments were arranged with 2 replicates: continuous flooding irrigation treatments (CFI), and three intermittent irrigation treatments Ⅱ-0, Ⅱ-1 and Ⅱ-2, in which plants were re-irrigated when the soil water potential fell below 0, -10, and -20 kPa, respectively, at soil depth of about 5 cm. Water consumption was lower in treatment Ⅱ-0 than in treatment CFI because the percolation rate was reduced by the reduction in the hydraulic head of ponded water. Intermittent irrigation led to soil repeated shrinking and swelling in Ⅱ-1 and Ⅱ-2 plots and, therefore, soil cracks developed rapidly. Since they became the major routes of water percolation, the soil cracks increased water consumption in treatments Ⅱ-1 and Ⅱ-2. There were no significant differences in dry matter production and grain yields between treatment Ⅱ-0 and treatment CFI, but the dry matter production and grain yields in treatments Ⅱ-0 and CFI were significantly higher than those in treatments Ⅱ-1 and Ⅱ-2. Therefore, the water use efficiency in the treatments was in the order of Ⅱ-0 > CFI > Ⅱ- 2 > Ⅱ- 1.
文摘Feeding costs could be reduced by use of alternative energy and protein sources. Leguminous trees remain green through the dry season, serving as a crude protein bank besides improving soil fertility through nitrogen fixation, nutrients recycling and stabilising soil on terraces. Some Kenyan farmers intercrop bananas with forages to cope with the perennial feed shortages. A simulation model assumed a family of six (husband, wife and four children) owning one cow producing 15 kg milk per day, living on 0.4 ha of land. Bananas grown on 0.36 ha in alleys of alternating rows ofLeucaena diversifolia and Calliandra calothyrses, intercropped with Guinea grass (Panicum maximum) and Desmodium uncinatum. Napier (Pennisetum purpureum) was planted in the alleys as a pure stand on 0.08 ha. Model analysis showed the household had adequate energy and protein all the year and was financially secured, with income exceeding routine expenditure. There were positive balances for nitrogen and phosphorus, but potassium application was required. A replica of the model was then tested.
基金supported by the National Foundational Scientific and Technological Work Programs of the Ministry of Science and Technology of China (grant No. 2013FY111400)the Project from the State Key Laboratory of Cryospheric Sciences (grant No. SKLCS-ZZ-2017)the National Key Geographic Conditions Monitoring: The Project of Basic National Geographical Conditions Monitoring in 2015
文摘Glaciers were solid reservoirs and important water resources in western China,but they were retreating significantly in context of global warming.Laohugou Glacier No.12 was the largest valley glacier in Qilian Mountains.In this study,realtime kinematic(RTK)data,topographic map and World View-2 satellite imagery were used to measure changes in terminus,extent and volume of Laohugou Glacier No.12.Results showed that Laohugou Glacier No.12 was shrinking significantly since 1957.From1960 to 2015,the terminus reduction of Laohugou Glacier No.12 was 402.96 m(3.99%)in total,and glacier length decreased to 9.7 km from 10.1 km.Reduction of glacier area and volume were the most obvious.From 1957 to 2015,glacier area and volume decreased by 1.54 km^2(7.03%)and 0.1816 km^3,respectively.Reduction trend of terminus and area was slowing in 1950-1980s,even stable for a period in the mid-1980s,and then accelerated.Ice core analysis result and nearly meteorological station data shown an increasing trend of temperature in 1957-2015,it was a main reason of continuous retreating of Laohugou Glacier No.12.
文摘Jilong is a place behind The Himalayas,which is almost isolated from the world.There is typical vertical ecosystem thanks to its special geological environment. So it is honored as “the most abundant species gene warehouse in the Plateau Area”and “the most beautiful valley in the world”.To exploit this valleyis necessary along with the construction of Jilong Porton the border of Sino-Nepal. Based on the research on the spot,the ecological resources there are evaluated and an idea that regards hiking tourism asmain form and ecotourismas the theme is put forward in this paper,which explores a way to develop the valley on the basis of sustainability.
文摘An online survey addressed to members listed in the European Cooperative Programme for Crop Genetic Resources Networks Working Group on Graithe current problems in the management of GL germplasm, to work out the criterian Legumes and Grain Legumes (GL) germplasm managers and breeders was carded out to pinpoint and decisions involved in the implementation of regeneration procedures and to identify strategic areas where further research is required. The survey was divided into three sections: (1) germplasm collection details and current status of the regeneration needs; (2) assessment over the understanding of basic information required to carry out appropriate regeneration procedures such as the breeding systems, the pollination requirements and pollinating agents, the isolation techniques and regeneration facilities; and (3) assessment of different options, in addition to "ex situ", such as "in situ" and "on farm" conservation. Obtaining, collating and analysing different kinds of existing data on mating system of GL species, effective pollination control methods and isolation facilities by species and location is one example of a priority issue. The GL community makes a clear request for greater support for the development of well-designed methodologies of regeneration that maintain the genetic structure of populations and that the optimum regeneration strategy is most likely to be achieved through integrating pollinators with the regeneration procedures. A major concern of the GL community is the lack of empirical scientific information on the most suitable pollinator agents.
文摘There are eighty sedimentary basins in five different types in African continent,i.e.craton sag basin,foreland basin,intermountain basin,passive margin basin and rift basin,which underwent the stress environment of stable depression-compression-extension.The first three types of basins had been intensely influenced by Hercynian and Alpine tectonic movement,while the later two types of basins always exist in a stable extension environment.Different basin evolution caused the obviously hydrocarbon distribution difference.In North Africa,marginal craton sag and rift basins show great expedition potential of hydrocarbon,marginal craton sag basins had good formation and preservation of Lower Silurian hot shale,tectonic-strata traps and migration pathway formed by Hercynian unconformity,and rift basins had excellent Upper Cretaceous marine source rocks and good hydrocarbon preservation with little tectonic activity.Meanwhile,in the salt-containing passive margin basins and delta basins of West Africa,thick strata containing high quality source rocks and plastic strata were well developed.Source rocks of high maturity,good hydrocarbon preservation,growth faults and deformational structure traps were formed by abundant overlying sediments and sources supplied from Tertiary large water system.
文摘Trends in land use and water consumption are crucial components in understanding the changing nature of agricultural production and water use in- the Northern Jordan Valley. The objective of this study is to examine current agricultural land uses in the Jordan Valley and their water consumption patterns as well as to examine the changes in land use and water consumption that occurred between the years 2002 and 2010. Farm level cropping patterns and total annual water use were analysed in order to examine inter-basin land use and water consumption characteristics as well as to estimate the amount of water consumed by each respective crop in total and per unit of land devoted to its production. It was found that citrus production dominated both land and water usage in every basin of the Northern Jordan Valley and that between 2002 and 2010 there were shifts toward increasing citrus production in almost every basin surveyed. It was found that agricultural irrigation water usage decreased overall between 2002 and 2010 by approximately 15 percent and irrigated land usage in the Jordan Valley increased by 5 percent. The role of citrus farming is becoming more important in the Jordan Valley as Jordan's agricultural economy shifts away from subsistence farming for staple food crops like wheat and vegetables toward more financially lucrative crops grown for an increasingly international market. This trend is at least partly due to the increasing cost of agricultural irrigation water from Jordan's national canal system.
基金funded by the National Key Research and Development Program of China(Grant No.2016YFA0601600)the Key Project of National Natural Science Foundation of China(Grant No.U1202232)
文摘The mountainous hydrological process usually shows high variation to climate change and human action. In the Longitudinal Range-Gorge Region(LRGR), Southwestern China and Southeast Asian, the transboundary runoff variations are much more sensitive and complex under the interaction of climate change, "corridor-barrier" functions in LRGR,and dams building. In this paper, based on the long hydrological records(1956-2013) from three mainstream hydrological stations in Nu River,Lancang River, and Red River, the region runoff variations were analyzed. The results show out: i) the regional runoff changes were strongly influenced by the "Corridor-Barrier" functions in LRGR from west to east, the variability extent of annual runoff increased, but tended to decrease after 2009 and the reduced extents also increased; ii) the annual runoff change in the three rivers had high concentration degrees; iii) there were periodicities of 33 years of runoff change in Nu River and Lancang River, and 30 years in Red River, and the lower flow period would continue for 8-9 years in Nu River and Lancang River but only for 4 years in Red River; iv) since 2010, as the two mega dams of Xiaowan and Nuozhadu built in Lancang River mainstream, their variations of annual runoff were quite different. The research results could offer a scientific base for sustainable utilization,conservation, and management of the regional water resources
基金Financial support to the first and second authors was provided by Shaoxing University and Dalian University of TechnologyFinancial support to the third author was provided by the National Natural Science Foundation of China (51579031, 41502321)Taishan Scholor Program and Aoshan Elite Scientist Plan
文摘The Grand Canyon is a massive rift in the Colorado Plateau. How and when it developed has been debated for nearly 150 years. Most geologists believe the unusual landscape was primarily shaped by water erosion.Here we propose a stress-rifting model to provide an alternative explanation for the origin of Grand Canyon.This paper adopts a brittle–ductile double layer model to simulate the deformation and rifting of the plateau due to the mantle-melting-induced expansion. Our results show that the uplift induced by thermal expansion and its associated horizontal extension can cause open fractures that extend from the brittle surface to the underlying ductile layer in a top-down way. In addition, we find that episodic uplift can deepen and connect multiple fractures together to form a larger fracture network. Our findings suggest that the formation of the Grand Canyon might have been driven by plateau uplift and its associated rifting under crustal extension, wherein water erosion played only a minor role in shaping the course of the Colorado River. The new paradigm provides simpler explanations to some of the long-standing geological mysteries surrounding the canyon.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41372112, 91028009)the National Key Projects of Oil and Gas (Grant No. 2011ZX05025-002-02)+1 种基金the Programme of Introducing Talents of Discipline to Universities (Grant No. B14031)the Open Fund of the Key Laboratory of Marine Geology and Environment, China Academy of Sciences (Grant No. MGE2013KG02)
文摘Deep-water canyon systems can provide important sandstone reservoirs for deep-water oil and gas exploration in the South China Sea;however,the sedimentary provenance of the Central Canyon in the Qiongdongnan Basin remains controversial.In this work,detrital zircon grains from three drilling sandstones in the Upper Miocene Huangliu Formation in the western part of the Central Canyon were analysed by LA-ICP-MS for U-Pb ages,in order to constrain their provenance.One hundred and ninety-one zircon grains yield concordant U-Pb ages ranging from 28.6 to 3285 Ma.Most of them show oscillatory or linear zoning in CL-images and high Th/U ratios(>0.1),suggesting that they are magmatic zircons.Three major age clusters at about30 Ma(N=6),220–270 Ma(N=29),and 420–440 Ma(N=13),and five minor age clusters at 70–110 Ma(N=7),150–170 Ma(N=4),800–850 Ma(N=11),1800–2000 Ma(N=16),and 2400–2600 Ma(N=7),can be identified in the age spectrum,which are very similar to those of the Upper Miocene sandstones and modern river sands in the Red River area,but different from those of other nearby regions(e.g.,Hainan Island,the Pearl River area,and the Mekong River area)in Southeast Asia.The major age peak at about 30 Ma in our samples is consistent with the timing of tectonothermal events in the Red River Fault Zone.Therefore,we suggest that the provenance of the western part of the Central Canyon,in the Qiongdongnan Basin,was fed dominantly by the Paleo-Red River system during the Late Miocene.