利用第二次青藏高原科学考察及其他数据,结合5层网格嵌套、高分辨率(最高333 m)的WRF(Weather Research and Forecasting)可分辨云数值模拟,研究了局地山谷风环流在青藏高原东南林芝地区2019年9月17~18日一次地形云和降水形成过程中的...利用第二次青藏高原科学考察及其他数据,结合5层网格嵌套、高分辨率(最高333 m)的WRF(Weather Research and Forecasting)可分辨云数值模拟,研究了局地山谷风环流在青藏高原东南林芝地区2019年9月17~18日一次地形云和降水形成过程中的作用。结果表明,此次降水过程由西风槽天气过境造成,林芝位于西风槽底部,具有弱不稳定层结,云和降水过程呈现明显的午后、傍晚和凌晨三个阶段的变化特征,并且发现局地山谷风环流在这三个阶段的变化中具有重要作用。午后阶段,由于山区强烈的太阳辐射加热,首先产生明显的上坡风和强上谷风环流,在山坡迎风坡受阻挡抬升,并激发出强的地形波,产生了强对流云和降水;傍晚阶段,由于山脉强烈的长波辐射冷却效应,产生的强下坡风在谷底辐合抬升,促进了山谷上空的弱对流、层状云发展;凌晨阶段,下坡风达到最强,产生了强下谷风环流(山风),下坡风在谷底产生强烈的抬升作用,形成深厚的层状云降水过程。展开更多
文摘利用第二次青藏高原科学考察及其他数据,结合5层网格嵌套、高分辨率(最高333 m)的WRF(Weather Research and Forecasting)可分辨云数值模拟,研究了局地山谷风环流在青藏高原东南林芝地区2019年9月17~18日一次地形云和降水形成过程中的作用。结果表明,此次降水过程由西风槽天气过境造成,林芝位于西风槽底部,具有弱不稳定层结,云和降水过程呈现明显的午后、傍晚和凌晨三个阶段的变化特征,并且发现局地山谷风环流在这三个阶段的变化中具有重要作用。午后阶段,由于山区强烈的太阳辐射加热,首先产生明显的上坡风和强上谷风环流,在山坡迎风坡受阻挡抬升,并激发出强的地形波,产生了强对流云和降水;傍晚阶段,由于山脉强烈的长波辐射冷却效应,产生的强下坡风在谷底辐合抬升,促进了山谷上空的弱对流、层状云发展;凌晨阶段,下坡风达到最强,产生了强下谷风环流(山风),下坡风在谷底产生强烈的抬升作用,形成深厚的层状云降水过程。